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ABSTRACT

Although the existence of cosmic rays with energies extending well above 1019 eV

has been confirmed, their origin remains one of the most important questions in

astro-particle physics today. The High Resolution Fly’s Eye Detector (HiRes) de-

tects Ultra High Energy Cosmic Rays (UHECRs) by employing the air-fluorescence

technique to observe Extensive Air Showers (EAS) in the atmosphere over Dugway,

Utah. It has been collecting data since May 1997 during which time over 1500

events with energies greater than 1018.5 eV have been observed in monocular mode.

These events are characterized by arrival directions with asymmetric uncertainties,

which are explored in detail for this study. Multiple methods are developed and

utilized to search for anisotropies in the arrival directions. A primary emphasis is

placed upon previous reported observations that suggested small-scale clustering

and global dipole biases. Additionally a new method for searching for anisotropies

is explored. While all conclusions are statistically limited in their applicability,

the sensitivities are shown to be compatible with prior experiments. However, all

evidence to date on the arrival directions of the UHECRs observed by HiRes in

monocular mode is consistent with an isotropic distribution.
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CHAPTER 1

INTRODUCTION

The observation of cosmic rays with energies in excess of 1017 eV, or Ultra-High

Energy Cosmic Rays (UHECRs), has now spanned over 40 years. Over that period,

many source models have been proposed to explain the origin of these remarkably

energetic particles. Yet there has been no conclusive evidence that would vindicate

any of these various source models. We know no more about the origins of UHECRs

now than we did at the inception of this field of research in 1963 [1].

This work will focus on UHECRs with measure energies above 1018.5 eV. The es-

timated integrated flux of UHECRs above this energy is ∼10 events km−2sr−1yr−1.

That is, we could expect ∼10 UHECRs to land within a 1 km2 surface in one year’s

time. The rarity of these particles makes it impractical to measure them directly.

In this work, we rely upon the air-fluorescence technique. The air-fluorescence

technique observes UHECRs by using the Earth’s atmosphere as a giant calorimeter.

UHECRs interact with the atmosphere to form Extensive Air Showers (EAS). These

showers can be observed by ground-based optical apparatuses that are designed to

detect to brief flash of scintillation light that occurs when an EAS passes through

the atmosphere. This method allows one to observe UHECRs over a much larger

volume than would be practical with a direct measurement.

The High Resolution Fly’s Eye Experiment (HiRes) [2, 3] consists of two “eyes”,

HiRes-I and HiRes-II, situated 12 km apart at Dugway, Utah as is shown in

Figure 1.1. The sites have multiple “mirror” units each of which consists of a

spherical mirror and a cluster of photo-multiplier tubes (PMTs) which are placed

at the focal plane. By simultaneously observing a UHECR from both sites, one

can make “stereo” measurements of air showers. An observation that is only made
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Figure 1.1. Location of the High Resolution Fly’s Eye Experiment relative to Salt
Lake City, Utah (the location of the University of Utah).
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from one site is referred to as a “monocular” measurement. For this study, we

will focus solely upon monocular measurements made by the HiRes-I detector. We

have chosen to do so because HiRes-I has accumulated a much larger exposure than

HiRes-II thus providing us with larger statistics for our investigations.

This work will focus on the search for anisotropies in the distribution of ar-

rival directions of cosmic rays observed by HiRes-I. Several different potential

anisotropies will be considered. Because of the irregular nature of sky coverage

for air-fluorescence detectors and the highly asymmetric angular resolution (see

Chapter 6) of monocular observations, it is necessary to develop some novel tech-

niques in order to perform the requisite analysis.

The data set that we consider is the events that were included in the HiRes-

I monocular spectrum measurement [2, 3]. This set contains 1526 events with

measured energies greater than 1018.5 eV and 52 event with measured energies

greater than 1019.5 eV observed between May 1997 and February 2003 . This data

set represents a cumulative exposure of ∼ 3000 km2·sr·yr at 5 × 1019 eV.

1.1 Organization

Below is a synopsis of the contents of this work beginning with a general

description of UHECR physics and the HiRes-I detector and then continuing with

a description of the anisotropy analysis that was performed.

Chapter 2 provides a description general description of the physics of UHECRs

and of the EAS. Potential sources of UHECRs are explored as is their propa-

gation through the galactic and extra-galactic medium. The known properties

of EASs are explained as they relate to the air-fluorescence technique.

Chapter 3 gives a physical description of the HiRes-I detector. The general layout

of the HiRes-I detector is explained and a description of the data acquisition

apparati is provided. The electronic and atmospheric calibration methods are

also explained.
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Chapter 4 describes the Monte Carlo technique used to simulate showers for the

HiRes-I detector. All of the anisotropy studies in this work are rely upon

expected exposure estimates that are made by creating simulated data sets

that consist of events created the by the simulation routine.

Chapter 5 provides a description of the data processing chain and monocular

event reconstruction technique. Specifically, the profile constraint reconstruc-

tion method is explained.

Chapter 6 explores detector resolution issues that are pertinent to anisotropy

analyses. These include systematic shifts in energy and angular resolution

in the reconstruction and the overall angular resolution of the reconstructed

events.

Chapter 7 documents the procedure for quantifying the HiRes-I exposure with

particular attention to the simulation of data sets that accurately recreate

the expected HiRes-I exposure. Specific issues include seasonal variations

and accounting individual detector unit (mirror) ontimes.

Chapter 8 presents an analysis that searches for dipole enhancements in the distri-

butions of arrival directions for the HiRes-I UHECR event set. This analysis

found no evidence of dipole effects oriented towards the Galactic Center,

Centaurus A, or M87. This analysis was published in a HiRes Collaboration

paper [4].

Chapter 9 presents a search for small scale anisotropy (i.e. autocorrelation) in

the HiRes-I events with estimated energies above 1019.5 eV. This analysis

shows that the arrival directions of the observed events provide no evidence

of autocorrelation. This analysis was published in a HiRes Collaboration

paper [5].

Chapter 10 explains and demonstrates a novel method involving a fractal dimen-

sionality technique to search for anisotropies in the absence of an a priori
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preferred source model. This technique is then demonstrated upon simulated

data sets of different sizes with different source models to show explore its

effectiveness in detecting arrival direction anisotropies. This technique was

published in an independent paper [6].

Chapter 11 demonstrates the application of the technique explained in chapter 10

to the dipole analysis performed in chapter 8. It is shown that while the fractal

technique is not as sensitive as the direct measurement, it provides estimates

that are consistent with the results reported in Chapter 8. This analysis was

published in a HiRes Collaboration paper [4].

The Appendix is a study that reassesses the significance of the small-scale aniso-

tropy reported by the Akeno Giant Air Shower Array (AGASA). This analysis

shows that the chance probability of the AGASA observation is cannot be

lower than ∼10−1 due to the limited sensitivity of the AGASA experiment.



CHAPTER 2

THE PHYSICS OF ULTRA-HIGH

ENERGY COSMIC RAYS AND

EXTENSIVE AIR SHOWERS

UHECRs have been a subject of interest in experimental high energy astro-

physics since the first observations were made by Volcano Ranch 40 years ago [7].

In that time we have learned only a little about their underlying nature. This is

partly due to their extreme rarity. For UHECRs with energies above 1018.5 eV we

can optimistically expect a particle incidence of ∼ 10−17 cm−2sr−1sec−1. Even by

using indirect methods for observing these particles, it is very difficult to accumulate

the statistics necessary to make a thorough study of these particles.

With the HiRes experiment, some significant progress has been made, both

in the measurement of the chemical composition [8] and of the energy spectrum

[2, 3] including evidence for the Greisen-Zatsepin-Kuz’min (GZK) suppression near

6 × 1019 eV [9, 10] (see Section 2.3.2. However, we have made less progress in

answering the astrophysical questions: where do UHECRs come from and how are

they produced. There are a few candidate sources for UHECRs, but as yet there

is no evidence that UHECRs are originating at these source and there is no widely

accepted model of how these sources accelerate elementary particles to the UHE

regime.

Because we cannot directly observe UHECRs, it is very important that we have

a thorough understanding of the extensive air showers (EAS) generated by UHECRs

in the atmosphere. Using detailed knowledge of the characteristics of EAS, we can

estimate the energy, composition, and arrival directions of the precursor UHECRs.



7

2.1 Current Knowledge: The Energy Spectrum and

Primary Composition

In Figure 2.1, we see the differential cosmic ray energy spectrum for twelve

decades of energy, including measurements in the UHECR regime. Because this

spectrum is steeply falling, it is customary to multiply it by E2.7 in order to clearly

show its features as is done in Figure 2.2. In the past 40 years, UHECR energy

spectrum measurements have been published by several collaborations including

Volcano Ranch [7], Yakutsk [13], Haverah Park [14], Fly’s Eye [15], the Akeno

Giant Air Shower Array (AGASA) [16], the HiRes-MIA Prototype [17] and HiRes

Mono [2, 3]. Fly’s Eye and HiRes have both also published their findings on UHECR

composition [18, 17, 8].

While the various experiments are not in complete agreement, it can be con-

cluded that the differential flux, dΦ
dE

, follows a power-law spectrum:

dΦ

dE
∝ E−α, (2.1)

where α ' 2.7 for E > 1018.5 eV.

This spectral index seems to remain approximately the same as one increases

in energy until one reaches an energy of E > 1019.8 eV at which point there simply

is not enough statistics from all of the experiments performed to date to make a

definitive determination. In Figure 2.3, one can see the most recently reported

differential spectrum observations of AGASA and HiRes monocular. While these

results are certainly not completely compatible, they can made to agree at all but

the highest energies by applying an energy correction factor of ∼ 1.3 to either

experiment. At the highest energies, the reported HiRes spectrum is compatible

with the GZK suppression (see Section 2.3.2 while the AGASA spectrum is not.

Primary composition is determined by comparing the atmospheric penetration

summarized by the depth of shower maximum, xmax, of the observed showers

with that predicted by CORSIKA [19] simulations of different primary particles.

Composition measurements performed by Fly’s Eye and HiRes have shown that

the observed showers with E > 1018.5 eV have mean xmax values consistent with

a primary composition mostly of protons with the admixture of a heavier nuclear
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Figure 2.1. The differential cosmic ray energy spectrum [11]. The spectral index
is ∼ −2.7 up to the knee and ∼ −3.1 between the knee and the ankle.
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Figure 2.2. The differential cosmic ray energy spectrum multiplied by E2.7 [12].
The data was taken from several experiments including: Akeno (�), JACEE (H),
Proton-4 (N), Tien Shan (O), MSU (4), Tibet (+), HEGRA (×), CASA-MIA (�),
Fly’s Eye (stereo (◦), mono (♦), and Haverah Park (�). The high energy data
points indicated by H are from AGASA. See [12] for references to original papers.
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Figure 2.3. The reported UHECR differential spectrum observations of AGASA
[16] and HiRes mono [2, 3].

component toward the lower energies. In Figure 2.4, we can see the xmax values

for showers observed in the stereo mode by HiRes with a comparison to the results

of the HiRes-MIA prototype results and the predictions of CORSIKA with the

QGSJet01 and SIBYLL 2.1 hadronic interaction models.

2.2 The Origins of UHECRs

UHECRs with E > 1018.5 eV are believed to be extra-galactic in origin. This

is because there is no known mechanism in our galaxy for producing particles at

these extreme energies. The most likely scenario is that UHECRs are produced in

some of the most violent places in the universe. We therefore hope that the study

of UHECRs will eventually lead to a better understanding of cosmology and other

highly energetic astrophysical phenomena.

2.2.1 Production Mechanisms

UHECRs are most likely produced in environments where shock fronts and

strong magnetic fields conspire to trap charged particles (i.e. protons and atomic
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Figure 2.4. The atmospheric penetration, xmax, of showers observed in the stereo
mode by HiRes with comparison to the HiRes-MIA prototype results and the
CORSIKA predictions using the QGSJet01 and SIBYLL 2.1 hadronic interaction
models.
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nuclei) and accelerate them over extended periods of time. The primary limitation

to this model is that there are relatively few observed astrophysical phenomena that

possess large enough magnetic fields over sufficient distance scales to achieve the

energies of UHECRs. In Figure 2.5, we can see the relationship between source size

and the observed magnetic field for a variety of potential UHECR sources. When

one considers that the current evidence points to a primary composition that is

Figure 2.5. The Hillas Diagram. In this diagram we can see the combination of
magnetic field strength and source size necessary to accelerate protons (solid line)
and iron nuclei (dashed line) to an energy of 1020 eV with a shock front assumed
to velocity β ' 1. The top of the shaded area represents the size and magnetic
field requirements necessary to accelerate a proton to and energy of 1020 eV with a
shock front velocity of β = 1/300.
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almost entirely proton, it becomes clear that our most likely sources are active

galactic nuclei (AGN) and radio galaxy lobes.

Alternatively, it is also possible that UHECRs are not accelerated at all but are

instead the decay product of some, yet unknown, super-massive objects. Several

such “top-down” models have been proposed including:

1. The decay of large quasi-stable super-symmetric particles that reside in the

galactic halo [20]

2. Topological defects such as “cosmic strings” [21]

3. Magnetic monopoles that are easily accelerated by the magnetic fields in the

interstellar medium and then initiate EAS when they encounter the Earth’s

atmosphere [21]

However, there is no evidence that any of these objects do in fact exist and even

if they did, these theories do no provide predictions that are consistent with the

observations that have been made.

2.2.2 Candidate Sources

Within the galaxy, there is very little likelihood that any known astrophysical

phenomena could produce the highest energy UHECRs. There are only two objects

that have the possibility of possessing large enough magnetic fields over sufficient

distance scales. First, the galactic center, Sagittarius A which is ∼8 kpc in distance.

Sagittarius A is a super-massive black hole with a mass of 3.5 × 106M� [22]. It is

is currently quiescent, but in the past is has undoubtedly had periods of extreme

activity. The second potential source is Cygnus X-3. Cygnus X-3 is a stellar black

hole that is part of binary system ∼2.3 kpc away in the Sagittarius Arm of the Milky

Way. Cygnus X-3 is extremely loud in the X-ray bandwidth and could potentially

be producing some UHECRs.

Outside of the galaxy, there are two likely sources within 20 Mpc. The first is

Centaurus A, which is ∼5 Mpc in distance. Centaurus A is a very loud radio galaxy

with lobes that extend out ∼50 kpc from its center. The other potential source is



14

M87. M87 is a massive elliptical galaxy with a extraordinarily active AGN which

is ∼15 Mpc in distance.

On a cosmological scale, one can also consider several extremely energetic as-

trophysical phenomena that typically occur at a distance scale of at least 500 Mpc.

All of these objects almost certainly possess large enough magnetic fields over

sufficient distances to accelerate particles into the GZK regime. These include

gamma-ray bursts (GRBs), quasars, and blazars. However, even if one disregards

other complicating factor, the cosmological distances to these objects, seemingly

preclude them as source candidates for the highest energy UHECRs because of the

GZK threshold.

2.3 Propagation

2.3.1 Magnetic Deflection

Because cosmic rays are thought to be charged particles, they are expected to be

subject to deflection in the galactic and extragalactic magnetic fields. The Larmour

radius, RL, for a particle with charge Ze can be approximated as follows:

RL(kpc) ' 1

Z

(

E

1 EeV

)(

B

1 µG

)−1

, (2.2)

where E is the energy of the particle and B is the magnetic field of the propagating

medium. For protons in a field comparable to the galactic field (B ∼ 2 µG)

RL(kpc) ' E(EeV )/2. This implies that a proton must have an energy of ∼ 4×1019

in order to propagate within the galaxy. Extra-galactic magnetic fields are believed

to be (B ∼ 1 nG) and randomly oriented [23]. This would lead to deflection that

is approximately three orders of magnitude less than that of the galactic magnetic

field, albeit over much greater distances.

2.3.2 The GZK Threshold

In 1966, Greisen, Zatsepin, and Kuz’min independently concluded that UHE-

CRs with energies above a threshold would interact with the Cosmic Microwave



15

Background (CMB) and consequently be degraded in energy [9, 10]. For a proton

this is dominated by the Delta resonance:

p+ γ2.7K −→ ∆∗(1232MeV) −→ p+ π0. (2.3)

This means that above the so-called GZK threshold, the universe becomes opaque to

UHECRs. For protons, the nominal threshold is ∼6× 1019 eV. Above that energy,

the distance which UHECRs can travel is limited to ∼ 50 Mpc. In Figure 2.6,

the estimated energy degradation for UHECRs in the super-GZK regime can be

seen. This degradation seems to necessitate that UHECRs with energies on the

order of 1020 eV must originate in our local part of the universe. This drastically

curtails the number of potential sources. However, the original super-GZK events

observed the Fly’s Eye [15] and AGASA [25] do no correlate with local violent

objects. Alternative explanations include:

1. Violation of Special Relativity (Lorentz Invariance) [26]

2. Stronger than anticipated extra-galactic magnetic fields, which would deflect

arrival directions away from local sources [27]

3. Exotic super-massive objects that initiate “top-down” decays within the gal-

actic halo [20]

2.4 The Extensive Air Shower

Once a UHECR is generated, it must travel across the vast expanse of space

before it finally arrives at the point where it can be observed by detectors here

on Earth. The EAS is the cascade of billions of particles that are generated when

a UHECR interacts with the terrestrial atmosphere. The EAS can be observed

in two principal ways; either by ground arrays that sample the remnant particles

in the shower (usually past shower maximum) as they strike the ground, or by

optical detectors that record either the cherenkov light or the air fluorescence of

an EAS as it develops in the atmosphere. HiRes relies upon the observation of

air-fluorescence, so we will focus upon the properties of the EAS that lead to the

fluorescence measurement.
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Figure 2.6. Energy of a proton as a function of propagation distance [24].
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2.4.1 EAS Development

A hadron induced shower can be thought of as a series of electromagnetic cas-

cades that are all induced by a hadronic core that remains very close to the shower

axis. As the EAS develops, the hadronic core produces π0 particles which then

electromagnetically decay initiating the electromagnetic cascades. The longitudinal

profile an EAS can be modeled using the Gaisser-Hillas parameterization [28] which

is based upon simulations of electromagnetic showers. The Gaisser-Hillas profile is

as follows:

N(x) = Nmax

(

x− x◦
xmax − x◦

)(xmax−x◦)/λ

exp

[

xmax − x

λ

]

, (2.4)

where x is the shower depth in gm/cm2, x◦ is nominally the depth of first interaction,

xmax is the depth of shower maximum, N and Nmax are the total number of particles

at depth x and xmax respectively, and λ is a constant of value 70 gm/cm2 for

hadronic showers.

To make an accurate simulation of an air shower, one must also consider the

latitudinal profile of the shower. This is approximated by the Nishimura-Kamata-

Greisen (NKG) formula [29]:

ρ(r) =
N

r2
f

(

s,
r

rM

)

(2.5)

whereN denotes the total number of electrons, s denotes the shower age, rM denotes

the Moliere radius for multiple scattering and f denotes the Nishimura-Kamata

function:

f

(

s,
r

rM

)

=

(

r

rM

)s−2 (

1 +
r

rM

)s−4.5
Γ(4.5 − s)

2πΓ(s)Γ(4.5 − 2s)
(2.6)

2.5 Light Production

The final consideration is the light production generated by the EAS. This is

what is in actuality observed by the air-fluorescence technique. There are two

components: Cherenkov emission and air-fluorescence emission.
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Cherenkov emission is narrowly confined to near the axis of the EAS. It produces

a very strong beam of light with angular distribution:

dNp

dΩ
∝ e−θ/θ◦

sin θ
, (2.7)

where θ◦ = 0.83E−0.67
t , Et is the lower threshold energy given by:

Et = mc2/
√

2(n− 1), (2.8)

and n is the index of refraction of the atmosphere.

Fluorescent emission is produced when the electromagnetic component of the

shower excites molecular nitrogen in the atmosphere. When this occurs, primarily

ultraviolet light is emitted isotropically by the molecular nitrogen. In Figure 2.7, we

Figure 2.7. The fluorescence spectrum of nitrogen by Bunner [30].
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can see the measured spectrum of nitrogen as a function of wavelength as measured

by Bunner in 1968 [30]. More recent, yet unpublished measurements by the FLASH

collaboration [31] seem to confirm Bunner’s and suggest that the air-fluorescence

is largely independent of atmospheric pressure.

The relative contributions of shower light resulting from Cherenkov and nitrogen

fluorescence emission is dependent upon the orientation of the shower axis with

regards to the detector. It is important that one distinguishes between the two

different types of emission because only the fluorescent component will be utilized

in determining shower energy.



CHAPTER 3

THE HIGH RESOLUTION FLY’S EYE

DETECTOR AT LITTLE GRANITE

MOUNTAIN

The High Resolution Fly’s Eye Experiment is located at the United States

Army’s Dugway Proving Ground, about 100 km southwest of Salt Lake City, Utah

in the western United States. The detector consists of two separate sites with a

12.6 km separation. The first site, HiRes-I, is located at Little Granite Mountain

(a.k.a. “Five Mile Hill”). HiRes-I began operation in May 1997. The second

site, HiRes-II, is located at Camels Back Ridge. HiRes-II began operation in June

1999. Since this work focuses almost exclusively on the monocular observations of

HiRes-I, using stereo observations only for calibration purposes, only HiRes-I will

be discussed in detail.

3.1 Detector Layout

During the history of its operation, HiRes-I has consisted of anywhere from 14

to 21 detector units in operation. Each detector unit views a section of sky 16◦ wide

in azimuth covering elevation angles from 3◦ to 17◦. With the original 21 detector

units, this led to an azimuthal coverage of 336◦, although the current configuration

of only 20 detector units, since 2002, covers 320◦ in azimuth. A maximum elevation

angle of 17◦ was chosen because this optimized the ability of the detector to observe

the highest energy showers at extreme distances (∼ 30 km) and the 3◦ lower edge

raises the field of view above artificial light sources associated with military facilities

on the ground.
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The individual detector units are housed in pairs in shelters constructed at Little

Granite Mountain in the early 1990’s. Most shelters consist of steel sheds with a

large garage-style doors that opens at night when the detector units are in operation

and close during daylight hours to shield the mirrors and photo-tube units from

direct sunlight. For a time, one detector unit was also housed in a shelter that was

a modified grain silo.

Each detector unit is connected to the HiRes-I central facility via Ethernet.

The central facility consists of a data acquisition (DAQ) computer, a GPS based

Central-Timing crate and a YaG laser used for nightly detector calibration. A T1

line provides network connectivity to the outside world. In Figure 3.1, a schematic

representation of the HiRes-I detector is shown.

T1

GPS
CLOCKCentral

Timing
Crate

Mirror trigger signals

100 Mbits/s Ethernet (10Base2)

DAQ
computer router

trans-
ceiver

+

Figure 3.1. A schematic representation of the HiRes-I detector.
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3.2 The Individual Detector Unit

The individual HiRes-I detector units consist of three primary components: a

4.18 m2 spherical mirror, a photo-multiplier tube (PMT) cluster, and corresponding

VME crate electronics. The data acquisition system employs a “sample and hold”

(S/H) electronics system that was first implemented in the HiRes prototype in

1993. The most challenging design criterion for this system is robustness, as the

electronics is operated essentially in an open environment with ambient tempera-

tures ranging from −20◦ to 50◦. Between its original prototype deployment and its

reconfiguration in 1997 to form the HiRes-I detector, this system has required no

significant modification.

The light collection component for each detector unit is a spherical mirror.

Each mirror has an area of 4.18 m2. However, due to the obscuration of the PMT

clusters, the effective area of each mirror is reduced to 3.72 m2. For the purpose of

this analysis, the reflectivity coefficient of the mirror over the pertinent frequency

band (300 - 400 nm) is estimated to be 0.8. In Figure 3.2, we can see the physical

positioning of the HiRes mirror.

For each mirror, there is a corresponding PMT cluster. The PMT cluster is

placed on the mirror axis at a distance of 0.485 times the radius of curvature of

the mirror. This separation was chosen both to minimize the optical spot size, rm,

and its off-axis variation, drm/dθ. Each PMT cluster is composed of 256 PMTs

arranged in the hexagonal honeycomb configuration. In order to improve the signal

to noise ratio, the tubes are covered with a UV-transmitting glass filter. The system

has f/1 optics and with a radius of curvature of 4.73 m, each individual tube views

an approximately 1◦ cone of sky with an entire PMT cluster viewing a section of

sky that is approximately 16◦ in azimuth and 14◦ in elevation. Each tube has its

own pre-amplifier and high-voltage (HV) divider and is plugged into a single-piece

back-plane that provides high and low voltages (LV) as well as signal output to the

mirror electronics crate. This is shown schematically in Figure 3.3.
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Figure 3.2. The placement of a HiRes mirror with respect to the PMT cluster.
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Figure 3.3. A schematic representation of an individual HiRes-I PMT channel.
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The readout electronics is deployed in a double-height (6V) VME crate housed

in a standard rack which also contains the requisite HV and LV power supplies.

Each VME crate contains:

1. A CPU board

2. A Programmable Pulse Generator (PPG) board

3. A trigger logic board

4. 16 readout or “ommatidial” boards (OMBs)

5. A multifunction control/monitor board

In Figure 3.4, we see the schematic overview of readout electronics. The PPG

10 Mbits/s ethernet (10Base2)

Standard
VME

Backplane

C
P
U

P
P
G

T
R
G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

signal cables

M
I
S
C

signal cables

signal cables

signal cables

Photomultiplier Tube Cluster

Figure 3.4. A schematic overview of the HiRes-I readout electronics.
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board is both as a diagnostic tool and for nightly electronics calibration. The

multifunction board provides miscellaneous functions such as HV and LV readout,

temperature monitoring, and garage door control. The ommatidial boards provide

secondary signal processing functions for the cluster including amplification, inte-

gration, and digitization of the PMT signals which then allows each OMB to form

subcluster level triggers. The OMB subcluster trigger is shown schematically in

Figure 3.5. This information from the individual OMBs is then provided to trigger

logic board which forms mirror-wide triggers as is shown in Figure 3.6. Mirror-wide

triggers are then transmitted by the CPU board to the DAQ computer in the central

facility.

3.3 The Central Facility

The central facility is a complex of interconnected trailers at Little Granite

Mountain that houses the electronic DAQ equipment, repair facilities, and rudimen-

A15

A0
A1
A2
A3

D0
D1
D2
D3

64k x 4
Static
RAM

25 microsecond gates

HiRes S/H subcluster trigger
Trigger OUT

Trigger Patterns:

(1) any
(2) any two
(3) any 2 adjacent
(4) any 3

(6) all
*(5) any 3 w/ 2 adj

A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

Figure 3.5. The HiRes-I OMB subcluster triggering system.
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Figure 3.6. The HiRes-I mirror-wide triggering system.
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tary living quarters for detector operators. Over the operation history of HiRes-I,

the primary DAQ computer was first a DEC Alpha and is now a commodity Linux

box with an Intel CPU. In conjunction with the central DAQ computer, there

is a double-height VME crate that applies time stamps to the mirror triggers

received by the central DAQ computer. The central timing crate assigns a time

to the event which is based upon an absolute time provided by GPS. A second

Linux box is also present in the central facility which provides online diagnostic

tools for detector operation and quick online reconstruction of the observed events.

A separate trailer at the central facility contains a YaG laser that is employed

to illuminate the separate clusters by way of optical fibers for off-line calibration

purposes.

3.4 Remote Operations

Currently, the HiRes-I detector is configured so that it can be operated remotely

from collaborating institutions. Modifications for remote operations include the

introduction of fail-safe curtains attached to light sensors. These curtains deploy

in the event that a door fails to close to provide a physical barrier between the

mirror and the cluster from sunlight. Further modifications include the installation

of VNC software in the central facility computers to allow for the operation of these

computers from remote locations, remote power controllers that allow us to cycle

the power on any piece of essential equipment over a modem. The modem is also

needed for emergency operation in the event of network outages.

3.5 Detector Calibration

The calibration of HiRes-I can be divided into to three primary constituents:

electronics response, PMT response, and atmospheric clarity. For the sake of

brevity, we will only consider the calibration efforts employed in the analysis of

the HiRes-I data set as it now stands.

The electronics calibration of HiRes-I is primarily concerned with two quantities:

pedestal values and the response of the individual pixel to a graduated signal. The
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pedestals are measured at the beginning and end of each night by taking a series

of random triggers of the individual clusters with the garage doors closed. By

considering the fluctuation in the individual tube read-outs, the inherent electronic

noise of the individual tubes can be calculated. The response of the individual pixel

to a graduated signal is measured by using the PPG to provide a series of pulses of

various heights and widths.

PMT response is calibrated using a highly stable roving xenon flasher (RXF).

The RXF luminosity is known to an accuracy of ±10%. Periodically during detector

down times, the RXF is manually transported to each mirror and used to illuminate

the cluster with a known amount of light with a series of neutral density filters.

The response of each PMT can be established as a function of the number of

photons observed. These calibration data sets are then introduced into the offline

processing scheme with each data part employing the calibration data set that is

chronologically closest to it.

Atmospheric calibration is accomplished mainly with the use of a steerable

YaG laser situated at HiRes-II. Each hour, this laser fires a set program of shots

into the night sky to comprise full coverage in both elevation and azimuth. By

reconstructing the HiRes-I observation of these laser shots, it is possible to establish

the night-to-night values of atmospheric attenuation. However, because this laser

was not in use for more than half of the operational time life HiRes-I, an average

value of atmospheric attenuation is employed for the purpose HiRes-I monocular

data analysis. The specific details of the atmospheric model will be discussed in

the next chapter.



CHAPTER 4

EVENT SIMULATION

Event simulation plays in critical role in all aspects of HiRes data analysis. A

comprehensive simulation code has developed corrabatively by the collaboration for

this purpose. The ability to realistically simulate air showers allows us to calculate

aperture, model the resolution of event reconstruction, and to produce large libraries

of simulated data sets. In order to create simulated events that are representative

of the actual data, all of the processes that affect the observation of actual events

must be taken into account. These include shower development, light production,

light propagation, detector optics, and detector electronics.

4.1 Event Geometry and Shower Development

Each event can be described using three parameters: energy, composition, and

geometry. For the purpose of this study, a two component mix of composition was

used: protons and iron nuclei. In accordance with the composition and spectral

measurements previously made by Fly’s Eye stereo [15, 18], proton events were

simulated with a differential energy spectral index of γ = −2.6 and iron events

with γ = −3.5. The proton and iron fluxes were set to be equal at an energy of

E = 1018.4 eV . Event geometry was set assuming uniform distributions on cos θsh

and φsh where θsh is the zenith angle and φsh is the azimuthal angle of the arrival

direction of the event. A value for the impact parameter, Rp, is then chosen on a

uniform distribution of R2
p for a selected minimum and maximum value of Rp. For

the highest energy simulations (where the aperture is expected to be larger), we

used: 3.0 km ≤ Rp ≥ 70.0 km.

If, for a given event, the above procedure produces a shower that is observable

from the HiRes-I detector, then the simulation is allowed to proceed. The longitudi-
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nal development of the shower follows the Gaisser-Hillas (G-H) parameterization of

equation 2.4 with the three free parameters: x◦, xmax, and Nmax selected according

to physical distributions. The depth of first interaction, x◦, is chosen on the

probability density,

p(x◦) = e−x◦/x◦ , (4.1)

where x◦ = 70 gm/cm2 for protons and x◦ = 15 gm/cm2 for iron. The depth of

shower maximum is then calculated using the following:

xmax − x0 = 725.0 + 55.0 × (log(E) − 18) − x0 (proton) (4.2)

xmax − x0 = 650.0 + 55.0 × (log(E) − 18) − x0 (iron) (4.3)

The shower size at xmax, Nmax, is calculated by [32]:

Nmax = E/1.3 × 109, (4.4)

with E being the energy of the primary particle in eV.

Once all of the descriptive characteristics of the shower have determined, the

shower track is divided in 1000 angular segments. For each segment, the shower

depth, size, age, and the Moliere multiple scattering radius are calculated. The

shower size is derived from the G-H parameterization. The age parameter is

determined by the formula:

s = 3/(1 + 2xmax/x). (4.5)

The Moliere radius (which determines the lateral width of the shower) is given by:

rm = X◦ × Es/Ec, (4.6)

where X◦ = 37.1 gm/cm2 is the radiation length for electrons in air, Es = 21 MeV

and the critical energy, Ec = 97 MeV [33].

4.2 Light Production

The light produced by the EAS consists of two components: beamed cherenkov

radiation and isotropic fluorescence emission. While energy reconstruction depends
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primarily on the fluorescence light, it is necessary to model accurately the cherenkov

light contamination in the observed EAS so that this component can be subtracted

out.

Cherenkov light is produced when charged particle, primarily electrons in an

EAS, travel through a given medium at speed greater than the local speed of light.

For the purpose of our simulation, the number of cherenkov photons produced per

unit length can be written:

dNγ

dl
= 4παδF (Et)

∫

dν

c
, (4.7)

where α is the fine structure constant, δ = n−1 with n being the index of refraction

of air, ν is the frequency of the emitted radiation, and F (Et) is the fraction of the

electrons in the shower with energies greater than Et = mc2/
√

2delta given by [34]:

F (Et) =
34.8

(40.4 + Et)(1 + 10−4Et)2
(4.8)

Furthermore, the cherenkov radiation has an angular dependence:

dNγ

dldΩ
=
dNγ

dl

e−θ/θ0

2π sin θ
(4.9)

with θ0 = 0.83E−0.67
t [35].

On the other hand, the fluorescence light emitted by the shower is approximately

proportional to the number of electrons present in the shower at a given point in

the shower track. The amount of photons emitted per unit length per steradian is

given by:
d2Nγ

dldΩ
=
Y Ne

4π
, (4.10)

where Y is the fluorescent yield in photons/electron/m and Ne is the number of

electrons in the shower.

Several attempts at experimentally measuring the fluorescent yield of high

energy electrons have been made over the years. The integral value of Y used in this

analysis is based upon the recent reported by Kakimoto et al. [36] in conjunction

with the spectrum reported by Bunner [30] with the light generated in 1 nm bins.

These measurements provides an estimate of fluorescent as a function of energy and

temperature with a systematic uncertainty of ∼ 10%.
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4.3 Light Propagation

Now that we have established the means of light production in the EAS, we con-

sider the processes by which that light impinges on the HiRes-I detector. There are

three atmospheric mechanisms that we must consider: scattering by air molecules,

scattering by aerosol contaminants suspended in the atmosphere, and absorption

by ozone molecules. The effects of these mechanisms can be put into two cate-

gories: scattering of directional cherenkov light into the field of view and effective

attenuation of isotropic fluorescent light by scattering/absorbing it out of the field

of view.

4.3.1 Rayleigh Scattering

We first consider scattering due to molecular air. This process is commonly

referred to as Rayleigh scattering. The number of photons scattered per unit length

is given by [37]:

dNγ

dl
= −ρNγ

xR

(

400

λ

)4

(4.11)

with ρ being the atmospheric density and xR = 2970gm/cm2 [33] being the mean

free path for scattering at 400 nm. The angular distribution is given by:

d2Nγ

dldΩ
=
dNγ

dl

3

16π

(

1 + cos2 θ
)

(4.12)

By using equation 4.12 we can now calculate the contribution of Rayleigh-

scattered cherenkov light to the total light observed for each segment of the angular

track. However, we must also take into account the effective attenuation of the

observed light between the track and the point of observation. The transmission

coefficient for light traveling through molecular air for a path length of ∆x(gm/cm2)

is:

TR = exp

[

−∆x

xR

(

400

λ

)4
]

(4.13)

4.3.2 Aerosol Scattering

Aerosol scattering is treated approximately the same way as Rayleigh scattering.

However, because the precise nature and concentration of the aerosols is variable,
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an entirely analytical treatment is not possible. In general, the number of photons

scattered by aerosol per unit length per steradian is given by:

d2Nγ

dldΩ
= − Nγ

LM(λ)
ρa(h) × ϕ(θ). (4.14)

There are a number of free parameters in this equation that we must either deter-

mine from prior observations or with our own atmospheric calibration. First, ρa(h)

is the reduced aerosol density at height h above the ground. For the purpose of our

analysis, we assume an exponential aerosol profile:

ρa(h) = e−(h−hm)/Ha , (4.15)

where Ha is the scale height of the aerosols and is set to 1.0 km from laser

measurements. This assumes an aerosol structure comparable to the U.S. Standard

Desert Atmosphere.

The scattering phase function used, ϕ(θ), is based upon the Longtin desert

atmosphere aerosol model at a wind speed of 10 m/sec for 550 nm light. This is

shown in Figure 4.1 [33].

Finally, data from the laser calibration system is used to set the average ex-

tinction length, λm(334 nm) = 25 km. The wavelength dependence of λm used is

based on the Etterman extinction model, with the fractional difference from 334 nm

shown in Figure 4.2 [33].

By considering each segment of the track, we now calculate the contribution of

the aerosol-scattered cherenkov light to the total observed light using equation 4.14.

We also must find the aerosol attenuation between the track and the point of

observation. For a given reduced slant depth ∆s m (the integral of ρa from the

track to the point of observation) the transmission factor is:

TA(λ) = e−∆s/LM (λ) (4.16)

4.3.3 Ozone Absorption

We also consider the effect of ozone absorption. This is a small effect in

comparison to molecular and aerosol scattering but is included for completeness
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Figure 4.1. The Longtin phase function.
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Figure 4.2. The Etterman model of the wavelength dependence of the aerosol
extinction length.
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The transmission coefficient due to ozone is:

TO3 = exp(−∆xO3AO3(λ)) (4.17)

There are two empirically determined parameters in equation 4.17. The ozone

attenuation coefficient, AO3(λ), is shown in Figure 4.3 [33]. The integrated ozone

density, ∆xO3 relies upon a working knowledge of the ozone density profile as a

function of altitude. This is shown in Figure 4.4 [33].

Figure 4.3. The ozone attenuation coefficient as a function of wavelength.
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Figure 4.4. Ozone concentration as a function of altitude.
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4.4 Detector Optics

We now turn to the task of simulating the amount of light that reaches the

HiRes-I detector from a given EAS. This is done in two steps: For each track

segment, an analytical calculation is done to establish the expectation value for

the number of photons that reach the PMTs at HiRes-I. The actual number of

photons is then fluctuated according to the Poisson distribution corresponding to

the calculated mean. Then, each individual photon is ray-traced in order to take

into account the clover-leaf shape of the individual mirrors and the obscuration of

the PMT cluster.

The analytic calculation relies upon the formulae given in the previous two

sections. First, the number of photons are calculated using by multiplying the

expressions of d2Nγ/dldΩ by the length of a given track segment δγ. Then, number

of photo-electrons collected by the track segment are found by a disk-shaped mirror

are calculated by:

Npe =
420
∑

λ=300

(

dNγ

dΩ
(λ, θe)

∣

∣

∣

∣

scin

+
dNγ

dΩ
(λ, θe)

∣

∣

∣

∣

ascat

+
dNγ

dΩ
(λ, θe)

∣

∣

∣

∣

rscat

)

× TR(λ)TA(λ)TO3(λ)TUV (λ)RmQE(λ) δΩ. (4.18)

For this calculation, λ is summed over 1 nm steps and θe is the light emission

angle. The labels scin, ascat, and rscat refer to light provided by scintillation,

aerosol scattering of cherenkov light, and Rayleigh scattering of cherenkov light.

The transmission coefficients of the Rayleigh scattering, aerosol scattering, and

ozone absorption are taken into account by TR, TA, and TO3 , respectively. Detailed

detector characteristics are taken into account by TUV , the UV filter transmission

coefficient; Rm, the mirror reflectivity; QE, the PMT quantum efficiency; and δΩ

which is the solid angle subtended at the center of the track segment by the disc

shaped mirror placed at the observation point.

Once the expected number of photons per track segment is established, we

then use a Monte Carlo implementation of ray tracing to numerically simulate the

actual response of the HiRes-I detector optics to an EAS. For each track segment,

the mean number of photo-electrons found in equation 4.18 are taken and Poisson
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fluctuated. For each photo-electron, a longitudinal position in the track segment is

randomly chosen and a lateral position is chosen according to the NKG distribution

in equation 2.5. The photo-electron is then ray-traced to the PMT in order to take

into account the obscuration of the PMT cluster and the actual clover shape of the

real mirrors. At the PMT, the position of the photo-electron is fluctuated on a

Gaussian with σ = 0.25 cm in order to take into account the mirror imperfection.

Finally, this position is tested to see if it falls into the acceptance of a PMT. If

the photo-electron falls within the PMT acceptance, then it is weighted by the

measured tube response profile and added to the observed signal for that PMT.

4.5 Detector Electronics

The simulation of the HiRes-I detector electronics is primarily concerned with

two issues:

1. The modeling of the interaction between the S/H electronics and the individ-

ual tube signal

2. The application of the detector trigger requirements

The time interval for a shower observation consists of three parts:

1. The actual shower transit time, Te, across the mirror

2. A pre-shower interval, Ts = 25 µs, that takes into account tube noise triggers

formed prior to the transit of the shower

3. A post-shower interval, Th = 50 µs, that allows tubes to finish triggering once

the shower has crossed the field of view

Thus the total time interval that must be considered is: Ttot = Te + Ts + Th.

In our simulation, the Ttot interval is divided into 20 ns time bins. Each tube

in the PMT cluster is assigned its own set of bins. Each bin for each tube is then

filled with photo-electron contribution from the shower. Additionally, sky noise

fluctuations are added to the individual bins from a Poisson distribution with a
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mean value of 40 photo-electrons per µs. The mean value is suppressed to reflect

the AC coupling of the tube anode signal.

Once all of the bins are filled with the expected photo-electrons, each tube is

scanned for one or more triggers during the interval Ttot, where the signal processing

through the pre-amplifier, amplifier, and low-pass filters are emulated digitally. We

also simulate the splitting and delays of signal strength through the separate trigger

and integration/digitization channels (see Figure 3.3). Signals in the trigger channel

exceeding the preset threshold of 700 mV in any 20 ns bin initiate an integration in

the delayed channel of 5.6 ns, duplicating the functionality of the actual electronic

circuitry on the OMB.

The final step is to sort all of the recorded tube triggers in ascending chrono-

logical order and to search for an event trigger. This is done by first searching for

subcluster triggers (see Figure 3.5). A subcluster trigger requires that three tubes

within a subcluster (two of which are adjacent) trigger within a 6 µs time interval.

Once all of the subcluster triggers are recorded, they are then scanned to see if

any two coincide in a 25 µs time interval, which would then create an mirror-level

trigger. If no mirror-level trigger is found in the list of tube triggers, it is assumed

that the event would not have generated a trigger in the HiRes-I detector.



CHAPTER 5

DATA PROCESSING AND EVENT

RECONSTRUCTION

In the course of its operational history, the HiRes-I detector has collected on the

order of 108 event triggers. The vast majority of these triggers are due to electronic

and sky noise. Additionally, flashers and lasers produce event triggers as part of

the event calibration system. The data processing chain filters out these artificial

triggers and then selects events whose geometries are suitable for reconstruction.

5.1 PASS0 and PASS1: Event Preparation

The first step in the data processing chain is to pair together event triggers and

times. For each trigger an event packet is recorded by the main data acquisition

(DAQ) computer. Simultaneously , the central timing crate records a GPS time

for each event packet as part of a time packet sent to the DAQ computer once per

second. The program hma then pairs event packets with their respective times to

form the PASS0 stage in the data processing chain.

The next step, PASS1, involve using the program hpass1 to apply event calibra-

tion. Raw TDC values are converted to PMT trigger times measured relative to the

time of the mirror trigger. QDC values are converted to numbers of photo-electrons

employing the values from the routine roving xenon flasher (RXF) calibration and

pedestals from the nightly electronics calibration.

5.2 PASS2: The Rayleigh Filter

Once we have the processed events, we can filter out noise triggers to produce

the PASS2 stage data. The first step in this part is to search for track-like events

using a Rayleigh filter. Basically, this method employs the formula:
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plog =
R2

N ln 10
, (5.1)

where R is the length of the vector and N is the number of steps. Plog is the

negative of the base-10 logarithm of the probability that a given vector was the

result of a random walk process

In practice, the hit tubes are first ordered by the time that they triggered.

A step is then added for each nearest neighbor pair (tube within 1.5◦) triggered

beginning with the earlier tube and ending with the later tube. All of the steps

are added vectorially and the resulting value of plog is then calculated according

to equation 5.1. Events with plog ≥ 2.0 (i.e., with a 1% probability that they are

due to a random process) are kept. This initial filter reduces the total number of

events by ∼ 95% with the vast majority of the remaining events being due to the

atmospheric calibration systems.

5.3 PASS3: The Plane Fit

Figure 5.1 shows the geometry of a shower relative to the HiRes-I detector.

In order to reconstruct the shower trajectory, we first identify the shower-detector

(SD) plane by minimizing the function:

χ2 =
∑

i

[(n̂ · n̂i)]2 · wi
σ2
i

, (5.2)

where the sum is over triggered tubes, n̂ is the plane normal, n̂i is the tube viewing

direction unit vector and wi is the number of photo-electrons seen by tube i. An

angular error of σ = 1.0◦ is assumed for all tubes. By initially selecting only tubes

that occur in clusters of three or more, we can obtain a rough value for n̂. We then

use that value to reject tubes that are either spatially or temporally uncorrelated

to the shower track. This process is iterated until either there are no more rejected

tubes or less than three tubes remain.

The event rejection criteria during PASS3 include:

1. Failure of the plane fit (i.e., less than three remaining tubes)

2. Angular track length of less than 6◦
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Figure 5.1. Shower geometry relative to detector.
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3. Average number of photons per good tube less than 75

4. Track width RMS greater than 1◦

5. Angular speed greater than 5.73◦/µs which corresponding to a distance to a

vertical shower, otherwise know as a “pseudo-distance” of 3 km.

Further filtering is done in PASS3a and PASS3b. PASS3a employs a “correlation

cut” where we calculate the correlation coefficient, ρ(x, y) = Cov(x, y)/(σxσy)

where the two variables in question are the tube trigger times and the χi values from

Figure 5.1. PASS3b tightens two of the cuts from PASS3. Specifically, the angular

speed cut is lowered to 3.33◦/µs (corresponding to a pseudo-distance of 5 km) and

the minimum average number of photons per good tube is increased to 200. These

two additional cuts are specifically applied for monocular reconstruction using the

profile-constrained fit (PCF) described below.

5.4 PASS4 Profile-Constrained Reconstruction

While the original Fly’s Eye experiment was able to reconstruct shower geometry

purely with a timing fit of tube signals, simulations showed that this was not the

case for HiRes-I. Because a single-ring detector observes much shorter track lengths

than a detector with full sky coverage, Rp values are frequently underestimated by

as much as 75% in simulations when a pure timing fit is employed. This neces-

sitates the implementation of a profile-constrained reconstruction routine, where,

in addition to timing, the expected shower profile is used as a constraint. This is

done by fitting both the tube timing and the tube signal amplitude information in

parallel. By varying the profile to which the tube signal amplitude is fit, the best

combined χ2-fit, of both the profile and timing information, is then chosen as the

optimal solution.

First, we consider the timing fit. In Figure 5.2 we can see the relationship

between shower viewing angles, χi, and shower viewing times, ti. The two are

related by the following equation:

ti = t0 +
Rp

c
tan

(

π − ψ − χi
2

)

, (5.3)
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Figure 5.2. Track geometry in the Shower-Detector plane.

where t0 is the time at which the shower passes through the point of closest

approach, Rp, the impact parameter and ψ is the shower in-plane angle shown in

Figure 5.2. Once this relationship is known, we can then reconstruct an observed

shower track by minimizing the χ2 function:

χ2
tim =

∑

i

1

σ2
i

{

ti −
(

t0 +
Rp

c
tan

(

π − ψ − χi
2

))}2

, (5.4)

where σi = (500/
√
Si) ns is the estimated uncertainty in tube signal times with Si

being the tube signal amplitude in photo-electrons.

While the timing fit is sufficient when considering the longer angular track

lengths (≥ 40◦)) provided by the full-sky coverage of the Fly’s Eye detector, the

vast majority of HiRes-I events have track lengths of less then 15◦. For these events,

the corresponding ti(χi) span is so short that equation 5.3 is nearly linear. Previous

simulation studies showed that for a timing fit, σRp
∼ 1/L5/2 [38], where L is the

angular track length. This rapid deterioration of resolution for shorter track lengths

forces us to place additional constraints on our χ2 minimization.

The shower profile fit for a given shower geometry is based on:
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χ2
pfl =

∑

i

1

σ2
i

(S
(m)
i − S

(p)
i )2, (5.5)

where S
(m)
i is the observed tube signal strength (in photo-electrons), S

(p)
i , is the sig-

nal strength predicted by simulation, and σ2
i = S

(m)
i + 200 which is the uncertainty

of the tube signal strength added in quadrature to the ambient sky noise measured

at HiRes-I. The S
(p)
i values are determined for a given geometry by the Monte Carlo

simulation described in Chapter 4. The profile χ2 is minimized with respect to the

Gaisser-Hillas profile parameters xmax and Nmax as seen in equation 2.4.

The actual reconstruction is done for a series of trial xmax values that include

650, 685, 720, 755, 790, 825, and 860 gm/cm2. Since 1018 eV proton shower has

an average xmax of 725 gm/cm2 and a 1020 eV proton shower has an average xmax

of 835 gm/cm2, these trial values cover the range of xmax expected for hadronic

showers.

For each xmax value, the shower profile fit is made while varying ψ over the range

[0, 180◦] with the Rp value specified by the relation in equation 5.3. Once χ2
pfl is

minimized with respect to ψ, χ2
tim is calculated for the specified geometry. Both χ2

values are then normalized per degree of freedom and a combined χ2
com = χ2

pfl+χ
2
tim

is calculated for the given value of xmax.

Next, the best fits corresponding to the seven xmax values are compared and

the one with the lowest value of χ2
com is chosen. Additional quality cuts are then

imposed, which include:

1. The angular track length is required to exceed 7.9◦

2. The depth for the highest elevation hit must be less than 1000 gm/cm2.

3. The value of ψ must be less than 120◦.

4. No more than one angular bin can be contaminated with ¿25% Cherenkov

light.

In Figure 5.3, the best profile fit for the first chronological event in the HiRes-I

data set is shown.
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Figure 5.3. The profile-constrained geometry fit for the first event in the HiRes-I
data set. This shower was observed on May 29, 1997 and has a reconstructed energy
of 11.6 × 1019 eV.



CHAPTER 6

RECONSTRUCTION RESOLUTION

In order to properly utilize the HiRes-1 monocular data, we must carefully

consider resolution of the profile-constraint reconstruction technique. This method

leads to broad, energy-dependent resolution in both energy estimation and the

determination of the arrival angle (ψ) within the plane of reconstruction. Further-

more, Monte Carlo studies indicate that there are energy-dependent systematic

shifts in the central values of both the estimated energy and ψ when one compares

the profile constraint fit results with input Monte Carlo.

6.1 Energy Resolution

For the purpose of our anisotropy studies, we are only considering events whose

reconstructed energies are above 1018.5 eV . This is the data set that was used

in the published energy spectrum analysis [2, 3]. We first need to correct for the

energy-dependent systematic shift in energy that is observed in Monte Carlo studies.

The fractional energy shift can be shown to have the following relationship (see

Figure 6.1):
∆E

E
= 0.34556e−

log10 E

1.0206 − 0.099633 (6.1)

where E is the energy estimated by the profile constraint fit in EeV. For events

with energies of 1018.5 eV , this leads to a positive correction of ∼ 11%. For a data

set with a differential spectrum proportional to E−3, it leads to an ∼ 25% increase

in the total number of events over 1018.5 eV . The energy resolution is obtained

by studying the reconstruction of simulated events. In Figure 6.2, we see that the

energy resolution at 1018.5 eV is approximately 26%, improving to 16% at 1019.5 eV.
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Figure 6.1. The mean fractional shift in energy between the Monte Carlo input
and reconstructed energy estimated by the profile constraint fit.
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Figure 6.2. The fractional energy resolution observed by applying the reconstruc-
tion technique to simulated events.
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6.2 Verifying the Energy Resolution and

Correction Estimations

We now can perform a series of checks to verify that the simulation is accurately

capturing the energy resolution of the events. First, we compare the geometrical

distribution of events in the observed data and the simulation. This is done by

considering the distribution of impact parameters, Rp (Figure 6.3) and zenith

angles, θ (Figure 6.4).

As a further check, we consider the subset of events that were successfully

reconstructed in both the HiRes-I monocular data set and in the HiRes stereo

data set. Because the stereo events have a much better constrained geometry, we

can use the stereo reconstruction to study monocular reconstruction in the same

way we use simulated events. In Figure 6.5, we see that monocular reconstruction

(with the correction applied) does not have a systematic bias when compared with

stereo geometry. In Figure 6.6, we see that the distribution of fractional energy

reconstruction errors is the same for simulation and the comparison of the energy

values obtained via the monocular and stereo techniques.

6.3 Angular resolution

For a monocular air fluorescence detector, angular resolution consists of two

components, the plane of reconstruction and the angle ψ within the plane of recon-

struction. Figure 5.1 illustrates how this geometry would appear with a particular

plane of reconstruction and a particular value for ψ. We can see that we should be

able to determine the plane of reconstruction very accurately. However, the value

of ψ is more difficult to determine accurately because it is highly dependent on the

precise results of the profile constraint fit. The profile constraint fit determination

of ψ is also subject to a systematic shift in its central value. This shift in can

be characterized by its relationship to the reconstructed energy estimated by the

profile constraint fit (see Figure 6.7):

ψSHIFT = 18.353◦e−
log10 E

0.66080 − 2.7311◦ (6.2)

While the χ2 fit itself can provide an error estimate for the fitted value of ψ,
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Figure 6.3. The distribution of Rp for real versus simulated events at different
energies. In each case, the solid line histogram corresponds to distribution of
Rp values for the simulation. The data points correspond to the specified angle
distribution of the real data with Gaussian uncertainties assumed for each bin.
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Figure 6.4. The distribution of zenith angles for real versus simulated events at
different energies. In each case, the solid line histogram corresponds to distribution
of zenith angle values for the simulation. The data points correspond to the specified
angle distribution of the real data with Gaussian uncertainties assumed for each
bin.
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Figure 6.5. The comparison of the estimated energies from the HiRes-I monocular
reconstruction and the HiRes stereo reconstruction.
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Figure 6.7. The systematic shift in the central value of ψ between the Monte
Carlo input and profile constraint fit results.
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the fact that systematic shift exists suggests that this error estimate is, by itself,

not reliable. This can be confirmed by comparing the input ψ values of simulated

events with the results of the profile constraint fit. The quantity that we are in fact

interested in is: |ψMC − ψPCF|/∆ψχ2 . The distribution for this quantity should be

characterized by:

〈 |ψMC − ψPCF|
∆ψχ2

〉

=
1√

2πσ2

∫ ∞

−∞

|x|e− x2

2σ2 dx =

√

2

π
= 0.79788 (6.3)

and
( |ψMC − ψPCF|

∆ψχ2

)

RMS

=

(

1√
2πσ2

∫ ∞

−∞

x2e−
x2

2σ2 dx

)
1
2

= 1 (6.4)

where ∆ψχ2 is the angular resolution predicted by the χ2 fit. However, if we refer

to the actual distribution of |ψMC − ψPCF|/∆ψχ2 in Figure 6.8 we in fact have a

mean value of 2.221 ± 0.006 with an RMS of 3.115.

Customarily, the field of high-energy particle physics uses the resolution function

(the distribution of the difference between reconstructed and input values from

simulated data) to establish a measure of the average statistical uncertainty of a

measurement. So a possible alternative would be to see if we can parameterize the

angular resolution as a function of the reconstructed energy provided by the profile

constraint fit. This can be done with the following relationship (see Figure 6.9):

∆ψ = 15.2◦e−
log10 E

0.69085 + 3.4◦ (6.5)

We verify that this parameterization is providing the proper errors by once again

considering the distribution of |ψMC−ψPCF|
∆ψ

, this time for with ∆ψ = ∆ψEP, the

value of ∆ψ predicted by the energy parameterization. The resulting distribution

pictured in Figure 6.10 has a mean of 0.7786±0.0019 and an RMS of 1.0435, values

that conform well with theoretical values predicted in equations (6.3) and (6.4).

Before we abandon the χ2 angular resolution predictions altogether, there is one

more question that we should ask: Does the profile constraint fit behave the same

on both simulated and real events? There is some reason to think that it would

not.
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simulated events using the χ2 fit to predict the angular resolution (µ = 2.221±0.006
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Figure 6.9. The the resolution of ψ determined from comparisons between Monte
Carlo inputs and profile constraint fit results.
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135,186 simulated events predicting the angular resolution via an energy parame-
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Calibration uncertainties will inevitably lead to rougher profiles with real events

and it would impractical to develop an event simulation that actually took into

account all of the fluctuations of a real particle shower. A simple check that we

can provide would be to look at the ratio of ∆ψ predicted values from the χ2-fit

and from the energy parameterization for both simulated and real events. From

Figures 6.11 and 6.12, we can see the distribution of ratios is noticeably broader

for the real data. A possible solution to this is to put in a smearing constant of

s◦ = 1.210 for the Monte Carlo, that is ∆ψ = s◦∆ψ◦ for the energy parameterized

value of ∆ψ. As we can see in Figure 6.13, the addition of this smearing constant

produces a distribution of ratios that is very similar to the distribution of ratios for

the simulated data. If we now multiply the smearing constant into equation (6.5),

we will get the corrected expression for ∆ψ:

∆ψ = s◦∆ψ◦ = 18.4◦e−
log10 E

0.69085 + 4.1◦ (6.6)

For the actual analysis described in later chapters, equation (6.6) is used fro the

parameterization of ψ resolution. Correspondingly, the reconstruction error for

simulated events are additionally smeared by the factor s◦.

We also must take into account the error in the determination of the plane of

reconstruction, ∆n. The plane of reconstruction is not determined by a separate fit

that is applied earlier in the data processing chain. We again use the comparison

between Monte Carlo input and the reconstructed output to parameterize the error

in plane determination. However, instead of parameterizing the error in plane

determination with the reconstructed energy provided by the profile constrain fit,

we will use the angular track length, ∆χ (in degrees) of the event. The actual

parameterization is as follows (see Figure 6.14):

∆n = 72.889◦e−
∆χ

1.9595 + 0.30908◦ (6.7)

A comparison between the results of the plane fitter applied to events with

and without the RXF calibration, one will see a 12% difference in the events that
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where ∆ψχ2 is the ψ resolution predicted by the

χ2-fit and ∆ψEP is the ψ resolution predicted by energy parameterization method
for the simulated data (µ = 0.4334 and RMS = 0.5184).
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where ∆ψχ2 is the ψ resolution predicted by the

χ2-fit and ∆ψEP is the ψ resolution predicted by energy parameterization method
for the real data (µ = 0.5760 and RMS = 0.6849).
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Figure 6.13. Distribution of
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where ∆ψχ2 is the ψ resolution predicted by the

χ2-fit and ∆ψEP is the ψ resolution predicted by energy parameterization method
for real data with ∆ψ = s◦∆ψ◦ (µ = 0.4339 and RMS = 0.5156).
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Figure 6.14. The the resolution of the plane of reconstruction determined from
comparisons between Monte Carlo inputs and profile constraint fit results.
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are accepted. This suggests that calibration uncertainties can have a substantial

impact on the determination of the plane of reconstruction. Hence we will apply

the smearing constant, s◦ to equation (6.7), which yields:

∆n = s◦∆n◦ = 88.2◦e−
∆χ

1.9595 + 0.37◦ (6.8)

6.4 Using Stereo Data to Further Refine the Angular

Resolution and Establish the Angular Resolution

Systematic Uncertainty

One way to check the efficacy of the angular resolution parameterization is

by considering events that were successfully reconstructed by both the HiRes-1

monocular profile constraint routine and by the stereo reconstruction routine that

considers both HiRes-1 and HiRes-2 data. In stereo mode, the shower detector

planes of the two detectors are intersected, thus the geometry is much more pre-

cisely known and the total angular resolution is of order 0.6◦, a number that is

largely correlated to σplane and thus is negligible when added in quadrature to the

larger term, σψ. This allows us to perform a comparison of the angular resolution

estimated through simulations to the observed angular resolution values of actual

data.

We analyzed ∼ 200 actual events from the HiRes-I monocular data set which

were also seen in stereo whose energies were estimated to be above 1018.5 eV by

the profile constraint reconstruction routine and were successfully reconstructed by

both mono stereo reconstruction routines. For each event, the opening angle be-

tween the nominal arrival directions estimated by mono and stereo reconstructions

were histogrammed. We then considered the full library of simulated events. For

each simulated event, we sampled the error space five times, both with and without

the smearing constant, s◦, and then histogrammed the resulting opening angles

to the nominal arrival direction estimated by the profile constraint reconstruction

routine. The results shown in Figure 6.15 seem to validate the angular resolution

parameterization and the application of the smearing coefficient to the simulated

events. In Figure 6.15c 6.15d, we show the distribution of angular errors for real
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Figure 6.15. Arrival direction error comparison between real data (mono vs.
stereo) and simulated data for events with estimated energies above 1018.5 eV. The
solid line histogram corresponds to the arrival direction error distribution of the
monocular reconstructed Monte Carlo simulated data. The crosses correspond to
the arrival directions error distribution observed for actual data by comparing the
arrival directions estimated by the monocular and stereo reconstructions. —(a
and b): without the application of the smearing constant, s◦; (c and d): with the
application of the smearing constant, s◦. In each case, the solid line histogram
corresponds to the estimated angular resolution distribution of the entire library
of simulated events. In the case where s◦ has been applied, the solid line in the
ratio component corresponds to the fit y = ax + b where a = 0.000 ± 0.011 and
b = 0.98 ± 0.11.
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and simulated data. The uncertainty in the slope of the ratio (Figure 6.15d) leads

to an 7.5% uncertainty in the angular resolution.



CHAPTER 7

MODELING THE HIRES EXPOSURE

In order to calculate the significance or to set meaningful limits on anisotropies

seen within the HiRes-I monocular data set, it is important to simulate data

sets that possess the same exposure characteristics as the actual data set. This

presents a unique challenge. First of all, the aperture of the HiRes detector is

dependent upon both energy and arrival direction. Secondly, the HiRes-1 exposure

is asymmetric in seasonal coverage, night to night weather conditions and individual

mirror ontimes.

For the purpose of creating simulated data sets, we generated a library of

simulated events which were subsequently reconstructed using the profile-constraint

reconstruction routine. This library of events possesses the spectrum and compo-

sition that were obtained by the Fly’s Eye Stereo experiment [15, 18]. A total of

∼ 1.3 × 105 simulated events were successfully reconstructed with energies above

1018.5 eV .

Once a library of simulated events were created, we then turned to the task of

creating simulated data sets of equal exposure to the HiRes-1 monocular data set.

In general, the apertures of air-fluorescence detectors are complicated: We need to

assign times to individual events that accurately reflect that distribution of obser-

vation times seen in the actual data. The main considerations include: detector

ontimes, mirror ontimes, and weather conditions that can lead to asymmetric sky

coverage.

The detector ontimes are calculated by a program in the hires soft library called

“HSUM.” HSUM is run on the HiRes-1 data each month after the global weather

cuts are applied to exclude any data where the weather is so uniformly bad that it

would preclude any viable events observations. For each data part, HSUM notes
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(among other things) the start and end times of the HiRes-1 detector (there are

generally several data segments for each night of observation). We then randomly

assign a time from the recorded observation periods to each prospective individual

simulated event for a simulated event set.

It is also necessary to apply a mirror-by-mirror correction. A detector start

record does not ensure that every individual mirror was alive or that its view was

unobstructed by doors, curtains, clouds, or excessive sky noise. On a minute to

minute basis, each mirror provides a status packet that provides critical information

on that mirror’s operational status. Two pieces of information are of particular

interest to us: the event rate and the mean threshold of the tubes in the individual

mirror. We will only consider a particular minute of data for an individual mirror

to be valid for the sake of aperture calculation if a specific set of criteria are met:

1. The particular minute of data in question must have at least two event

triggers. This excludes minutes where the view of a mirror could potentially

be blocked by a door or curtain.

2. The minute of data cannot have more 1000 event triggers. This excludes data

where the aperture of a mirror is being severely compromised by excessive

sky noise or problems with the cluster electronics.

3. The mean threshold, Θi for the mirror for a given minute is constrained by

the following condition:

Θi ≥< Θ > −2
√
< Θ2 > − < Θ >2 (7.1)

where < Θ > and < Θ2 > are taken for a given mirror over two year periods

for all data before the manual weather cut is applied.

The last cut allows us to exclude data for which the sky noise is abnormally low

due to the presence of clouds in the field of view. The data are considered in two

year increments in order to account for the two competing factors. First, one has

annual climatological cycles that can vary quite a bit from year to year. One also
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has to consider the rapid expansion of the Wasatch population corridor 80 km away,

which is leading to ever-higher amounts of ambient sky noise. The distributions

of minute-to-minute mean thresholds are shown for two different mirrors for a two

year period in Figures 7.1 and 7.2. While this cut excludes ∼ 15% of all data, it

only excludes < 5% of the data that remains after the weather cut is applied.

Next, we apply the correction to our simulated data set by only accepting events

when the mirrors in the Monte Carlo event and the randomly selected event time

coincide during a minute where the mirrors are retained by the above cuts. In

Figures 7.3 and 7.4 we see the results of this mirror-by-mirror correction by

comparing the sidereal time distributions of real and simulated data sets before

and after the correction is applied. A definite improvement is seen in Figure 7.4

in the correlation between the sidereal time distributions of the real and simulated

data, especially at the sidereal times where the event count is at its maximum and

minimum. As an additional check, we also compare the distribution of azimuth

and zenith angle distributions for real and simulated data sets after the above

corrections were applied. The results are shown in Figures 7.5 and 7.6. In both

figures, we find excellent agreement between data and simulation. Note however,

that these correspond to the shower directions in terrestrial coordinates and do not

introduce an a priori bias in the equatorial coordinates in the subsequent analysis.
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Figure 7.1. Distributions of the minute-to-minute mean threshold for Mirror 17 in
2001-2003. The shaded area shows the cut that was applied in order to determine
whether a given minute would would be considered in HiRes-1 aperture estimation
when the mirror-by-mirror correction was applied.
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Figure 7.2. Distributions of the minute-to-minute mean threshold for Mirror 20 in
2001-2003. The shaded area shows the cut that was applied in order to determine
whether a given minute would would be considered in HiRes-1 aperture estimation
when the mirror-by-mirror correction was applied.
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Figure 7.3. Sidereal time distribution comparisons between the ∼ 1500 real data
events and 106 simulated event/time pairings before the mirror-by-mirror correction
was applied (χ2/d.f. = 1.5). The solid line histogram corresponds to the sidereal
time distribution of simulated event/time pairings. The crosses correspond to the
sidereal time distribution of the real data with Gaussian uncertainties assumed for
each bin.
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Figure 7.4. Sidereal time distribution comparisons between the ∼ 1500 real data
events and 106 simulated event/time pairings after the mirror-by-mirror correction
was applied (χ2/d.f. = 1.2). The solid line histogram corresponds to the sidereal
time distribution of simulated event/time pairings. The crosses correspond to the
sidereal time distribution of the real data with Gaussian uncertainties assumed for
each bin.



77

0

25

50

75

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cosine of the Zenith Angle

N
u

m
b

er
 o

f 
E

ve
n

ts

0

0.5

1

1.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cosine of the Zenith Angle

D
at

a/
M

C
 R

at
io

Figure 7.5. Distribution of the cosines of the zenith angles (χ2/d.f. = 0.9). The
solid line histogram corresponds to the specified angle distribution of 106 simulated
event/time pairings. The crosses correspond to the specified angle distribution of
the real data with Gaussian uncertainties assumed for each bin.
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Figure 7.6. Distribution of the azimuth angles (χ2/d.f. = 1.31). The solid
line histogram corresponds to the specified angle distribution of 106 simulated
event/time pairings. The crosses correspond to the specified angle distribution
of the real data with Gaussian uncertainties assumed for each bin.



CHAPTER 8

SEARCH FOR GLOBAL DIPOLE

ENHANCEMENTS

In the past five years, theoretical models have been suggested that would po-

tentially produce dipole distributions oriented towards M87 [39] or Centaurus A

[40, 41]. In addition, the Akeno Giant Air Shower Array (AGASA) has reported

findings suggesting a 4% dipole-like enhancement oriented towards the Galactic

Center present in its events with energies around 1018 eV [42]. This result seemed

to be corroborated by findings published by the Fly’s Eye experiment in 1999 that

suggested the possibility of an enhancement in the galactic plane also at energies

around 1018 eV [43], and in addition by a re-analysis of data from the SUGAR

array that was published in 2001 [44] that showed an enhancement in the general

vicinity of the Galactic Center.

However, both AGASA and Fly’s Eye are subject to a limiting factor; they are

both located too far north in latitude to directly observe the Galactic Center itself.

The re-analysis of SUGAR data actually demonstrated an excess that was offset

from the Galactic Center by 7.5◦ and was more consistent with a point source than

a global dipole effect [44]. While the current High Resolution Fly’s Eye (HiRes)

experiment is subject to a similar limitation in sky coverage as the AGASA and

Fly’s Eye experiments, we will show that, by properly estimating the HiRes aperture

and angular resolution, we can effectively exclude these dipole source models to a

certain degree of sensitivity. However, we are not able to completely exclude the

findings of AGASA or the theoretical predictions mentioned above.

Our methods for detecting the presence of a dipole source model will be based

upon comparisons between the real data and a large quantity of events generated
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by our Monte Carlo simulation program. The simulated data possess the same

aperture and exposure as the actual HiRes-I monocular data set as was discussed

in the previous chapter. In order to measure the presence of a dipole effect in

our event sample, we use first a conventional binning technique that considers the

event counts for the full range of opening angles from the center of each proposed

dipole distribution. We then show how the asymmetric angular resolution of a

monocular air fluorescence detector can be accommodated in this method. We

ascertain the 90% confidence interval for a dipole source model for each of the three

dipoles considered by comparing our real data with large numbers of similar-sized

simulated data sets. We then consider the effects of systematic uncertainties on our

measurements.

8.1 The Dipole Function

A dipole source model can be described, as first proposed by Farrar and Piran

[40]:

n =
1

2
+
α

2
cos θ, (8.1)

where n is the relative density of cosmic rays in a given direction, θ is the opening

angle between that direction and the global maximum of the distribution, and α is

the customary anisotropy amplitude [45]:

α =
nmax − nmin

nmax + nmin

. (8.2)

The cases of α = 1 and α = −1 correspond to 100% dipole distributions in the

direction of the center and anti-center of the dipole source model, respectively. The

case of α = 0 corresponds to an isotropic source model.

A simple scheme for measuring α consists of constructing a dipole function in

the following manner:

1. The opening angle is measured between the arrival direction of an event and

the center of the proposed dipole source model.

2. The cosine of the opening angle is then histogrammed.
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3. The preceding steps are repeated until all of the events are considered.

4. The resulting curve produced by the histogram is the dipole function.

The dipole function has two variable parameters: the bin width, ∆(cos θ), and the

total number of counts in all of the bins. At first glance, it would seem that the total

bin count is fixed upon the total number of events, but we will show that this is

not necessarily the case when we consider how to accommodate angular resolution.

In the simplest case of a sample that contains a very large number of events

with a constant exposure and aperture over the entire sky, the dipole function will

be proportional to equation 8.1. We propose two simple ways that one can quantify

the dipole function for this sample; the most obvious way is to consider its slope.

We can see by referring to equation 8.1 that this is equal to α
2
. A second way of

quantifying α is to consider the mean cosine value, <cos θ> for the dipole function:

<cos θ>=
1

2

∫ 1

−1

cos θ(1 + α cos θ) d(cos θ) =
1

3
α. (8.3)

Both methods of quantification produce values that are dependent upon α. While

the dependence of < cos θ > is linear in α for the case of homogeneous full-sky

coverage, we will find that this is not necessarily the case when considering the

cumulative exposure of a ground-based air fluorescence detector.

8.2 Calculating the Dipole Function for the

HiRes-I Monocular Data

As a first order measurement, we construct the dipole function for a source

model with a maximum value at the Galactic Center. For now, we only consider the

nominal arrival directions of the events in our data sample. For this demonstration,

we set the bin width of the dipole function to ∆(cos θ) = 0.04. This provides

us with a mean bin count, 〈n〉 = 30.52. Figure 8.1a shows the resulting dipole

function. However, in order to estimate the value of α, we first normalize our

dipole function with respect to aperture and exposure. This is done by considering

107 pairs of simulated events and event times that correspond to the actual HiRes-I

observation periods. By constructing a dipole function for this simulated set, we
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then estimate the normalization factor for each cos θ bin in the dipole function. The

result is shown in Figure 8.1b. The dipole function is then normalized and a χ2-fit

performed to determine its slope, m, and y-intercept, b. The normalized dipole

function is pictured in Figure 8.1c with the best linear fit applied. The scaling

constant, α, is then estimated by the quotient, m/〈n〉. The result for the galactic

dipole source model is then: α = −0.010 ± 0.055.
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Figure 8.1. The dipole function for the nominal arrival directions of the HiRes-I
data set—(a) the number of counts in each cos θ bin; (b) the aperture/exposure
normalization factor for each bin; (c) the normalized bin count with the χ2-fit to a
line (all uncertainties are Poisson).
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The same method was employed to calculate α in the cases of Centaurus A and

M87. For Centaurus A, we obtained a result of: α = −0.035 ± 0.060. For M87, we

found α = −0.005 ± 0.045.

8.3 Incorporating Angular Resolution into the

Dipole Function

The analysis described in the previous section does not take into account the

experimental angular resolution. Accommodating the angular resolution is impor-

tant to the overall integrity of this analysis because the HiRes-I monocular data

contains very asymmetric errors in arrival direction determination.

In order to accommodate the HiRes-I monocular angular resolution, it is nec-

essary to revise the method we use to construct the dipole function. Instead of

considering each event as a single arrival direction, we will consider each event to

be an elliptical, two-dimensional Gaussian distribution of N points with the two

Gaussian parameters, σ1 and σ2, being defined by the parameters that describe the

angular resolution, corresponding to equations 6.6 and 6.8. Figures 8.2 and 8.3

show how entire sets of events with these error parameters appear when projected

on a density plot using a Hammer-Aitoff projection and equatorial coordinates.

In order to account for angular resolution in the construction of the dipole

function, we add an additional step. Instead of simply calculating the opening

angle between the arrival direction of the event and the center of the dipole for

the preferred arrival direction, we do so separately for each of the N points in the

Gaussian distribution that describes each event’s arrival direction. By choosing a

sufficiently large value for N and a sufficiently small bin width, ∆(cos θ), we can

then construct the dipole function as a smooth curve. Examples of the dipole func-

tion are shown in Figures 8.4 and 8.5 for each of the event sets in Figures 8.2 and 8.3.

The next logical step would be to attempt to normalize the dipole function

of the real data with respect to aperture and exposure and then to calculate the

slope, m, and the y-intercept, b. However, this program would run into a major

complication. Because the Gaussian distributions that are used to approximate
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(a)

(b)

Figure 8.2. Density plots of event arrival directions with the angular resolution
parameters of the Hires-1 monocular data on a Hammer-Aitoff projection with
equatorial coordinates (right ascension right to left)— (a) HiRes-I monocular data
set; (b) simulated data set with an isotropic source model; In each case, the lighter
regions correspond to a higher density of event arrival directions.
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(a)

(b)

Figure 8.3. Density plots of event arrival directions with the angular resolution
parameters of the Hires-1 monocular data on a Hammer-Aitoff projection with
equatorial coordinates (right ascension right to left)— (a) simulated data set with
a galactic dipole source model (α = 1); (b) simulated data set with a galactic dipole
source model (α = −1). In each case, the lighter regions correspond to a higher
density of event arrival directions.
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(a)

(b)

Figure 8.4. The dipole function, with angular resolution included, for a galactic
dipole model for different event sets without correction for aperture and expo-
sure—(a) HiRes-I monocular data set; (b) simulated data set with an isotropic
source model.
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(a)

(b)

Figure 8.5. The dipole function, with angular resolution included, for a galactic
dipole model for different event sets without correction for aperture and exposure—
(a) simulated data set with a galactic dipole source model (α = 1); (b) simulated
data set with a galactic dipole source model (α = −1).
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the individual event arrival directions can overlap into a large number of bins, the

individual data points in the dipole function are highly correlated. This makes it

impossible to apply either the χ2-fit or a bootstrap method to estimate the error in

the values of m and b—and thus the error in α—for the normalized dipole function.

Another approach needs to be developed.

The method that we used is to compare the value of <cos θ> for the dipole

function of the real data sample with that of a large number of similar-sized

simulated data samples with a discrete spectrum of α-values. We can then show

how <cos θ> varies with respect to α for different dipole source models.

For each of the three dipole source models considered we used the following

procedure to measure the α parameter:

1. We calculated the value of <cos θ> for the dipole function of the real data

sample.

2. We created a total of 20,000 simulated data samples, 1000 each for 0.1

increments of α from -1.0 to 1.0, each with the same number of events as

the actual data. In Figure 8.6 we can see that the distribution of < cos θ>

values for each α-value generated conforms well to a Gaussian distribution.

3. We constructed curves corresponding to the mean and standard deviation of

<cos θ> of the dipole function for each value of α.

4. We determined the preferred value of α and the 90% confidence interval of

α for each dipole source model by referring to the intersections of the 90%

confidence interval curves with the actual value of <cos θ> for the dipole

function of the real data.

The results for all three dipole source models are shown in Figures 8.7, 8.8,

and 8.9. In each case, the nominal values of α and the 90% confidence levels

only deviated marginally from the values obtained without considering angular

resolution.
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Figure 8.6. The distribution of <cos θ> values for the dipole functions of simulated
data sets with a single α-value (without exposure correction)—(a) the galactic
dipole source model with α = 1.0; (b) the galactic dipole source model with
α = −1.0.
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Figure 8.7. Estimations of the value of α for three different dipole source models.
The curves demonstrate the dependence of <cos θ> of the dipole functions upon
α. The horizontal lines represent the value of < cos θ > of the real data for
the dipole functions of each dipole source model—(a) the galactic dipole source
model for α = [−1.0, 1.0]; (b) the critical region for the galactic dipole model:
α = 0.005 ± 0.055 with a 90% confidence interval of: [−0.085, 0.090].
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Figure 8.8. Estimations of the value of α for three different dipole source models.
The curves demonstrate the dependence of <cos θ> of the dipole functions upon
α. The horizontal lines represent the value of <cos θ> of the real data for the
dipole functions of each dipole source model— (a) the Centaurus A dipole source
model for α = [−1.0, 1.0]; (b) the critical region for the Centaurus A dipole model:
α = −0.005 ± 0.065 with a 90% confidence interval of: [−0.090, 0.085];
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Figure 8.9. Estimations of the value of α for three different dipole source models.
The curves demonstrate the dependence of <cos θ> of the dipole functions upon
α. The horizontal lines represent the value of <cos θ> of the real data for the
dipole functions of each dipole source model— (a) the M87 dipole source model for
α = [−1.0, 1.0]; (b) the critical region for the M87 dipole model: α = −0.010±0.045
with a 90% confidence interval of: [−0.080, 0.070].
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8.4 Systematic Uncertainty in the

Estimation of α

There are two principal potential sources of systematic error in the determina-

tion of α with HiRes-I monocular data. The first lies in the estimation of the angular

resolution. If the error in arrival direction estimation was being underestimated or

overestimated, it could lead to an improper evaluation of the confidence intervals

for α. In order to study the effect of angular resolution on our determination

of α, we repeated our analysis of the galactic dipole model twice. In the first

case, we increased the estimated angular resolution parameters for both the real

and simulated data sets by 33%. In the second case, we decreased the angular

resolution parameters for both types of data sets by 25%. In both cases, the width

of the 90% confidence interval for α changed by less than 0.010 and the nominal

value of α remained unchanged. The results suggest that the determination of α

is largely independent of the angular resolution—at least for the plausible range of

values that one could adopt for the angular resolution parameters.

The second issue of concern is the uncertainty in the determination of atmo-

spheric clarity. Because hourly atmospheric observations are not available for the

entire HiRes-I monocular data set, we have relied upon the use of an average

atmospheric profile for the reconstruction of our data [46]. Different atmospheric

conditions can influence how the profile constraint reconstruction routine interprets

an observed shower profile and thus can lead to slightly divergent determinations

of an event’s arrival direction. Unfortunately, we do not have large libraries of

simulated data with differing atmospheric parameters used in the generation and

reconstruction of events. However, we do have the real data reconstructed with a

full range of atmospheric parameters. By considering the value of <cos θ> over the

1σ error space of atmospheric parameters, we can establish the degree of systematic

uncertainty that is contributed to the determination of α by atmospheric variability.

We saw that in the most extreme case, the nominal value of α shifted by less than

.01. There was no broadening in the 90% confidence interval.
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8.5 Conclusion

We are able to place upper limits on the value of |α| for each of our three

proposed dipole source models. However, these limits are not small enough to

exclude the theoretical predictions [39, 40, 41]. Also, they do not exclude the

findings of the AGASA collaboration in terms of the intensity of the dipole effect

that they observed or in terms of the energy considered because the events in the

dipole effect observed by the AGASA detector possessed energies below 1018.5 eV

[42]. Furthermore, it should be noted that our findings apply only to each dipole

direction individually and not to all three simultaneously. Since it appears that

angular resolution has little impact on the measurement of α and we do not appear

to be systematically limited, we conclude that the driving factor in making a better

determination of α will simply be larger event samples. HiRes-I mono will continue

to have the largest cumulative aperture of any single detector for the next three

to five years, thus it will continue to serve as an ever more powerful tool for

constraining dipole source models.



CHAPTER 9

SEARCH FOR SMALL-SCALE

CLUSTERING

Another topic of interest in UHECR physics over the past decade has been

the search for small scale anisotropy in event arrival directions. This term refers to

statistically significant excesses occurring at the scale of ≤ 2.5◦. The interest in this

sort of anisotropy has largely been fueled by the observations of the Akeno Giant

Air Shower Array (AGASA). In 1999 [47] and again in 2001 [48], the AGASA collab-

oration reported observing what eventually became seven clusters (six “doublets”

and one “triplet”) with estimated energies above ∼ 3.8×1019 eV. Several attempts

that have been made to ascertain the significance of these clusters returned chance

probabilities ranging from 4 × 10−6 [49] to 0.08 [50].

By contrast, the monocular (and stereo) analyses that have been presented by

the High Resolution Fly’s Eye (HiRes) demonstrate that the level of autocorrelation

observed in our sample is completely consistent with that expected from background

coincidences [51, 52, 53]. Any analysis of HiRes monocular data needs to take into

account that the angular resolution in monocular mode is highly asymmetric.

It is difficult to compare the results of the HiRes monocular and AGASA

analyses. They are very different in the way that they measure autocorrelation.

Differences in the published energy spectra of the two experiments suggest an energy

scale difference of 30% [2, 54]. Additionally, the two experiments observe UHECRs

in very different ways. The HiRes experiment has an energy-dependent aperture

and an exposure with a seasonal variability [2]. These differences make it very

difficult to anticipate what HiRes should see if the AGASA claim of autocorrelation
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is based on actual source. In order to develop this sort of intuition, we apply the

same analysis to both AGASA and HiRes data.

9.1 The HiRes-I Monocular Data

The data set that we consider consists of events that were included in the

HiRes-I monocular spectrum measurement [2, 3]. This set contains 52 events

observed between May 1997 and February 2003 with measured energies greater

than 1019.5 eV. This collection of events is a subset of the data used in the dipole

analysis of the previous chapter and are subject to the same event reconstruction

and analysis.

For the range of estimated energies considered the angular resolutions are in the

range, σψ = [4.9, 6.1]◦ and σplane[0.4, 1.5]
◦. The arrival directions of these events

along with their 1σ error ellipses are plotted in equatorial coordinates in Figure 9.1.

Figure 9.1. The arrival directions of the HiRes-I monocular with reconstructed
energies above 1019.5 eV events and their 1σ angular resolution.
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9.2 The Published AGASA Data

The AGASA data with energies above 40 EeV has been published up to the year

2000 [25] and all but one of these events used for this calculation has a measured

energy greater than 4 × 1019 eV. The AGASA estimated angular errors [47] are

shown in Figure 9.2. The AGASA angular errors (Figure 9.2) are fit to a two-

component Gaussian distribution:

n = N◦(EEeV)

[

0.33∆θe−(∆θ)2/2σ2
1 + 0.67∆θe−(∆θ)2/2σ2

2

]

(9.1)

where σ1 = 6.52◦ − 2.16◦ log10EEeV, σ2 = 3.25◦ − 1.22◦ log10EEeV, and N◦(E) is

a numerically determined normalization constant. Figure 9.3 shows the arrival

directions of the published AGASA events plotted in equatorial coordinates with

their 68% angular resolution.
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Figure 9.2. The AGASA angular resolution as a function of estimated energy [47].
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Figure 9.3. The arrival directions of the published AGASA events with their 68%
angular resolution.

9.3 The Autocorrelation Function

We measure the degree of autocorrelation in both samples by means of an

autocorrelation function. It is calculated as follows:

1. For each event, an arrival direction is sampled on a probabilistic basis from

the error space defined by the angular resolution of the event.

2. The opening angle is measured between the arrival directions of a pair of

events.

3. The cosine of the opening angle is then histogrammed.

4. The preceding steps are repeated until all possible pairs of the events are

considered.

5. The preceding steps are repeated until the error space, in the arrival direction

of each event, is thoroughly sampled.
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6. The histogram is normalized and the resulting curve is the autocorrelation

function.

Figure 9.4a and 9.4b show an example of the autocorrelation function for a

highly clustered set of simulated data. The sharper the peak at cos θmin is, the

more highly autocorrelated the data set is. There are many ways that one could

quantify the degree of autocorrelation that a set possesses. The most obvious way

is to look at the value of the bin which contains cos θmin. However, this method

has some shortcomings. First of all, the value of the last bin is dependent upon the

chosen bin width. Also, the value of the last bin is not stable unless the angular

resolution is sampled at a level that is computationally unfeasible. Finally, the value

of the last bin over a large number of similarly autocorrelated sets does not produce

a Gaussian distribution (see Figure 9.5a),thus complicating the interpretation of the

results of an analysis employing cos θmin as an observable.

A more well-behaved measure of the autocorrelation of a specific set of data is

the value of <cos θ> for θ ≤ 10◦. This value is also a measure of the sharpness

of the autocorrelation peak at cos θ = 1. However, this method of quantification

does not depend on bin width and it does produce Gaussian distributions when

applied to large numbers of sets with similar degrees of autocorrelation, as is

demonstrated in Figure 9.5b. An additional advantage to this method is that by

considering the continuous autocorrelation function over a specified interval, both

the peak at the smallest values of θ and the corresponding statistical deficit in

the autocorrelation function at slightly higher values of θ are taken into account.

Thus we simultaneously measure both the positive and negative swings in the

autocorrelation signal. The interval of [0◦, 10◦] was chosen because it was found, in

simulations, to optimize the autocorrelation signal for clusters resulting from point

sources spread isotropically across the sky.

Using the description of the HiRes-I monocular angular resolution from Chap-

ter 6, we then calculate the autocorrelation function via the method described

above. In Figure 9.6, we show the result of this calculation. For this sample, we

obtain <cos θ>[0◦,10◦]= 0.99234.
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Figure 9.4. An example of the autocorrelation function for a simulated data
set that contains ∼ 10 clusters in a total of 60 events—(a) the full autocorrelation
function for θ = [0◦, 180◦]; (b) the critical region of the the autocorrelation function:
θ = [0◦, 10◦].
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Figure 9.5. Distributions of normalized bin densities of cos θmin and <cos θ>[0◦,10◦]

values for a large number of simulated sets with the same level of clustering as
in Figure 9.4—(a) Distribution of observed normalized bin densities of cos θmin,
note that it is not Gaussian (χ2/dof = 5.44); (b) : < cos θ>[0◦,10◦] distribution
(χ2/dof = 1.09).
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Figure 9.6. The autocorrelation for the HiRes-I events above 1019.5 eV—(a)
the full autocorrelation function for θ = [0◦, 180◦]; (b) the critical region of the
autocorrelation function: <cos θ>[0◦,10◦]= 0.99234.



103

We also calculate the autocorrelation function for the published AGASA events.

We show the result in Figure 9.7. For this sample, we obtain < cos θ >[0◦,10◦]=

0.99352.

9.4 Quantifying the Relative Sensitivity of HiRes-I

and AGASA to Autocorrelation

In order to quantify the relative sensitivity of the AGASA and HiRes-I data

sets, we must first understand the exposures of both detectors. For HiRes-I, we

assemble a library of approximately 8 × 104 simulated events with energies above

1019.5 eV. We then pair each event with randomly generated times during which the

detector was operating. As described in Chapter 6, a mirror-by-mirror correction

is applied where simulated events are rejected if the mirror(s) that would have

observed the event in question was not operating at the time that event would

have occurred. Once 107 pairings of simulated events and times are assembled, a

surface plot is created of the event density on a bin by bin basis. The value of

each bin is then normalized so that the mean value of all the bins in the observable

sky δ (declination) = [−30◦, 90◦] is 1. The resulting surface plot is shown in a

Hammer-Aitoff projection in Figure 9.8. We have shown in Chapter 7 that this

method produced zenith angle, azimuthal angle, and sidereal time distributions

that were consistent with that observed in the actual data [4]. The highest exposure

areas have a normalized relative exposure: ρH(δ, α) =∼ 2.5.

For the AGASA detector, we refer to the distribution of event declinations

presented in Uchiori et al. [55]. By following the lead of Evans et al. [56], we fit a

normalized polynomial to this distribution:

N(δ) = 0.323616 + 0.0361515δ − 5.04019 × 10−4δ2 +

5.539141 × 10−7δ3; (9.2)

where N(δ) holds for δ = [−8◦, 87.5◦]the maximum value of N(δ) is 1. We also

know that:

A◦

∫ 87.5◦

−8◦
N(δ) dδ =

∫ 87.5◦

−8◦
ρA(δ) cos δ dδ, (9.3)
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Figure 9.7. The autocorrelation for the published AGASA events—(a) the full au-
tocorrelation function for θ = [0◦, 180◦]; (b) the critical region of the autocorrelation
function: <cos θ>[0◦,10◦]= 0.99352.
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Figure 9.8. Hires-I estimated relative exposure, ρH(δ, α), for events above 1019.5 eV
in equatorial coordinates (right ascension right to left). The lightest region corre-
sponds to a normalized event density of 2.5. The observable sky extends from
δ = −30◦ to δ = 90◦.

where A◦ is a numerically determined normalization constant. We then derive:

ρA(δ) = A◦N(δ) sec δ;A◦ = 1.0251. (9.4)

The value of each bin is once again normalized so that the mean value of all the bins

in the observable sky δ = [−8◦, 87.5◦] is 1. The resulting surface plot is shown in

a Hammer-Aitoff projection of a equatorial coordinates in Figure 9.9. The highest

exposure areas have ρA(α) =∼ 1.6. In Figure 9.10, we show the distribution

of < cos θ >[0◦,10◦] values for isotropic data sets with each of the two different

exposure models (HiRes-I and AGASA). The AGASA data set manifests ∼ 10−3

chance probability above background. For the AGASA data, we also calculated the

autocorrelation function without consideration to angular resolution and employed

the more conventional θmin observable. After varying the bin width for θmin and

accounting for the trials factor, we independently concluded that the chance proba-

bility is ∼ 10−3 for the optimal bin width, θmin = [0◦, 2.5◦]. We thus conclude that

factoring angular resolution into our analysis and employing <cos θ>[0◦,10◦] as an
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Figure 9.9. AGASA estimated relative exposure, ρA(δ), for events above 1019.5 eV
in equatorial coordinates (right ascension right to left). The lightest region corre-
sponds to a normalized event density of ∼ 1.6. The observable sky extends from
δ = −8◦ to δ = 87.5◦.

observable in no way diminishes the sensitivity to autocorrelation in the reported

AGASA data.

There are a few important differences between the exposure of the HiRes-I

and AGASA detectors. First of all, the exposure of the HiRes-I detector is more

asymmetric than the exposure of the AGASA detector. This is not only due to

seasonal variations in the HiRes detector, but also due to its ability to constantly

observe the region around δ = 90◦ as a result of a higher zenith angle acceptance.

This higher zenith acceptance also allows the HiRes detector to observe a greater

region of the southern hemisphere. In general, while AGASA reports observations

for 56.9% of the total sky, the HiRes-I detector reports observations for 75% of the

total sky.

To simulate clustering we use the following prescription:

1. An event is chosen based upon the distribution in α and δ that is dictated by

ρ. In the case of HiRes-I, this is simply done by selecting a simulated event

from our library and then assigning it a time that is a known good-weather



107

(a)

0

50

100

150

200

250

300

350

0.992 0.994
<cosθ>[0°,10°]

N
u

m
b

er
 o

f 
S

im
u

la
te

d
 S

et
s

(b)

0

100

200

300

400

500

600

0.99 0.992 0.994
<cosθ>[0°,10°]

N
u

m
b

er
 o

f 
S

im
u

la
te

d
 S

et
s

Figure 9.10. Distribution of <cos θ>[0◦,10◦] values for simulated isotropic data
sets—(a) HiRes-I; (b) AGASA. In each figure, the vertical line represents the the
value of <cos θ>[0◦,10◦] for the observed data.
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ontime for the mirror(s) that observed that event. In the case of the AGASA

detector, this is done by selecting a random value for δ that conforms to the

distribution in equation (9.4) and then assigning it a random value in α (right

ascension) between 0h and 24h and sampling a value for the energy from the

energies of the reported events.

2. This event does not represent the source location itself, but is assumed to

have arrived from the source location with some error. We construct a ”true”

source location by sampling the error space of this event.

3. For each additional event assigned to that source, a simulated event is selected

with a “true” arrival direction that is the same as that of the initial event.

To study the relative sensitivity of AGASA and HiRes-I, we measure the value

of <cos θ>[0◦,10◦] for multiple simulated sets with a variable number of doublets

inserted. We then construct an interpolation of the mean value and standard

deviation of < cos θ >[0◦,10◦] from a given number of observed doublets for each

experiment. This will allow us to state the number of doublets required for each

experiment in order for the 90% confidence limit of < cos θ>[0◦,10◦] to be above

the background value of 0.99250. Figures 9.11 and 9.12 show the result of these

simulations. In general, for the HiRes-I data set, the 90% confidence lower limit

corresponds to the mean expected background signal with the inclusion of 6.25

doublets. For AGASA,the 90% confidence lower limit corresponds to the mean

expected background signal with the inclusion of 5.5 doublets. This demonstrates

that while AGASA has a slightly better ability to perceive autocorrelation, the

sensitivity of the two experiments is comparable.

We now apply the actual Hires-I <cos θ>[0◦,10◦] to the sensitivity curve shown

in Figures 9.11 and 9.12. In Figure 9.13 we can see the result of these simulations.

The observed HiRes-I signal corresponds to the 90% confidence upper limit with

the inclusion of only 3.5 doublets beyond random background coincidence.

If we repeat this analysis with first, a 7.5% reduction in the estimated angular

resolution values and second, a 7.5% increase in the estimated angular resolution
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Figure 9.11. Relative sensitivity of HiRes-I and AGASA to doublets—(a)
Simulations with the HiRes-I detector and 52 events; (b) 90% confidence above
background: 6.25 doublets, 95% confidence above background: 8.25 doublets. In
each figure, the horizontal line indicates the expected value of <cos θ>[0◦,10◦] for an
isotropic background.
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Figure 9.12. Relative sensitivity of HiRes-I and AGASA to doublets— (a)
simulations with the AGASA detector and 59 events; (b) 90% confidence above
background: 5.5 doublets, 95% confidence above background: 7.0 doublets. In
each figure, the horizontal line indicates the expected value of <cos θ>[0◦,10◦] for an
isotropic background.
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Figure 9.13. Sensitivity of the HiRes-I monocular observations to doublets—(a)
Simulations with the HiRes-I detector and 52 events; (b) 90% confidence above
observed signal: 3.5 doublets, 95% confidence above observed signal: 5 doublets.
In each plot, the horizontal line represents the value of < cos θ >[0◦,10◦] for the
observed HiRes-I data.
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values, we obtain a range for the 90% confidence upper limit of [2.75, 4.0] doublets

and a range for the 95% confidence upper limit of [4.5, 5.5] doublets.

A final area of concern is the systematic uncertainty in the determination of

atmospheric clarity. As before, we have relied upon the use of an average atmo-

spheric profile for the reconstruction of our data [46]. While different atmospheric

conditions have negligible impact on the determination of the arrival direction for

events with measured energies this high, differing conditions can have an impact

on energy estimation and thus the number of events that are included in our data

set. Over the 1σ error space for our estimation of atmospheric conditions, the total

number of events in our data set fluctuates on the interval [41, 65]. The value of

the observable, <cos θ>[0◦,10◦], has a fluctuation on the interval [0.99226, 0.99249]

owing to addition and subtraction of events from the data set. Note that in neither

case does the value of <cos θ>[0◦,10◦] exceed the mean value (0.99250) expected for

a background set.

9.5 Conclusion

We conclude that the HiRes-I monocular detector sees no evidence of clustering

in its highest energy events. Furthermore, the HiRes-I monocular data has an

intrinsic sensitivity to global autocorrelation such that we can claim at the 90%

confidence level that there can be no more than 3.5 doublets above that which

would be expected by background coincidence in the HiRes-I monocular data set

above 1019.5 eV. From this result, we can then derive, with a 90% confidence level,

that no more than 13% of the observed HiRes-I events could be sharing common

arrival directions. This data set is comparable to the sensitivity of the reported

AGASA data set if one assumes that there is indeed a 30% energy scale difference

between the two experiments. It should be emphasized that this conclusion pertains

only to point sources of the sort claimed by the AGASA collaboration. Furthermore,

because a measure of autocorrelation makes no assumption of the underlying as-

trophysical mechanism that results in clustering phenomena, we cannot claim that
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the HiRes monocular analysis and the AGASA analysis are inconsistent beyond a

specified confidence level.



CHAPTER 10

USING FRACTAL DIMENSIONALITY IN

THE SEARCH FOR SOURCE MODELS

The previous two chapters have alluded to significant discrepancies in the an-

isotropy results reported by the three major cosmic ray experiments. In particular,

AGASA has reported both a small excess toward the Galactic Center for events in

the range 1018 to 1018.4 eV [42], and a clustering at small angular scales for events

above 4 × 1019 eV [47]. The Fly’s Eye did not see an excess towards the Galactic

Center [57, 58], but did report a small enhancement along the Galactic Plane [43].

In 1995, it was reported by Stanev et al. [59] that the combined data of Haverah

Park [60], Yakutsk [61], AGASA [62], and Volcano Ranch [63] showed an excess

along the supergalactic plane with several potential point sources for events above

2 × 1019 eV. However, the HiRes experiment has reported that it saw no evidence

of an enhancement towards the galactic center [4] or small-scale clustering [5].

These conflicting reports call for developing a more global way in which one

could determine if a given sample possesses any statistically significant anisotropy.

We will show that by considering the information dimension, DI, of a given sample,

one can simultaneously look for anisotropies at all angular scales greater than the

angular resolution of the sample by considering the intrinsic heterogeneity of that

particular data sample. This method is quite robust in that it can easily accommo-

date both asymmetric angular resolutions and irregular apertures. Furthermore, in

the event that a sample is shown to be consistent with an isotropic distribution,

this method can be used to place upper limits on possible source models.

An important advantage of this technique is that, regardless of the model being

considered, only a single measurement of the data is actually taken. In this way,
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there is no dilution of the statistical significance when the experimental data set

is compared against a large number of models, as was the case for the reported

AGASA excesses. In those studies, systematic scans of bin sizes were made to

maximize the apparent significance of the observed excess. The fractal dimension-

ality method does not suffer from this shortcoming. For example, the observed

DI value can be compared to that generated for any number of a priori sources

without incurring a statistical penalty whereas a conventional binned, background

subtraction method would suffer from artificially enhanced statistical chance of

finding a signal.

10.1 Calculating Fractal Dimensions of

a Data Sample

Fractal dimensionality is a simple measure of the scaling symmetry of a struc-

ture. By measuring the fractal dimension of a data sample, one can examine

its heterogeneity at different levels of magnification. There are several ways of

exploiting this idea. From a computational perspective, the simplest is to use

box-counting. For the most general case, the capacity dimension, Dc [64, 65], one

partitions the sample space into equi-sized and equi-shaped “boxes” with edge size

ε:

Dc = lim
ε→0+

log N (ε)

log 1/ε
. (10.1)

Here, N(ε) is the minimum number of “boxes” with edge size ε necessary to cover

one’s sample.

The capacity dimension has a serious limitation: It only looks for the presence

of the sample within the available space and does not consider variations in the

density of the sample at a given point in space. In cases where the density may

differ within the sample space, the appropriate alternative is to use the information

dimension, DI [66, 67]:

DI = −
N

∑

i=1

lim
ε→0+

Pi(ε) logPi(ε)

log 1/ε
, (10.2)
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where Pi(ε) is the probability of finding a data point in the i-th box of edge size ε.

This is a particularly suitable measurement when considering a data set consisting

of UHECR arrival directions with finite angular resolution.

It should be noted that DC and DI are both particular cases of the q-dimension

[68, 69],

Dq =
1

1 − q
lim
ε→0+

log I(q, ε)

log 1/ε
; (10.3)

where

I(q, ε) =
N

∑

i=1

Pi(ε)
q. (10.4)

We can then see that DC = limq→0Dq and that DI = limq→1Dq.

10.2 Application to Arrival Direction Distributions

for UHECRs

In principle, it is simple to calculate the information dimension for a given

sample of events. However, two complications arise when considering a set of arrival

directions of UHECRs. First, the event directions are not known with complete

precision. This makes the determination of DI as ε→ 0 meaningless. Secondly, the

determination of DI requires that the sample space be divided into equi-sized and

equi-shaped bins. For a spherical surface, this is simply not possible. Nevertheless,

there are workable solutions for both of these problems.

10.2.1 Angular Resolution

We will consider a hypothetical monocular air-fluorescence detector. This de-

tector is largely based upon the characteristics of the Hires-I detector [2, 3]. Our

detector observes events with an angular resolution that is described by a highly

asymmetric 2-d Gaussian. For a monocular air fluorescence detector, angular

resolution consists of two components: σ1, in the determination of the angle,

ψ, within the plane of reconstruction, and σ2, in the estimation of the plane of

reconstruction itself. Figure 5.1 illustrates how this geometry would appear with a

particular plane of reconstruction and a particular value for ψ. Intuitively, we can

see that we should be able to determine the plane of reconstruction quite accurately.
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However, the value of ψ is more difficult to determine because it is dependent on

the precise results of the monocular reconstruction [2, 3].

The actual parameterizations of σ1 and σ2 assumed are as follows:

σ1 = 20◦e−1.5 log10 EEeV + 4◦ (10.5)

and

σ2 = 100◦e−0.5∆χ + 0.4◦. (10.6)

Here, EEeV is the primary energy of the shower in EeV. For the purpose of this

study, the energy will be allowed to vary between 1018.5 eV and 1020 eV with a

differential spectral index of −2.7. In this scenario, a shower with a primary energy

of 1018.5 eV will have σ1 = 13.4◦, while a shower with a primary energy of 1020 eV

will have σ1 = 5.0◦. This difference can be attributed to the fact that larger showers

have better defined profiles and a better signal-to-noise ratio.

The factor, ∆χ, in equation 10.6 is the angular track length (in degrees) of the

shower as observed by the detector, which is allowed to vary between 8◦ and 30◦.

A shower with an observed track length of 8◦ will have σ2 = 2.2◦, while a shower

with an observed track length of 30◦ will have σ2 = 0.4◦; a longer track-length leads

to a more accurate determination of the plane of reconstruction. The distribution

of σ2 values is largely independent of energy because while higher energy showers

do lead to more longitudinal development, they are also brighter, which allows

one to observe them at greater distances. These competing factors lead to ∆χ

distributions that are virtually identical across the observed spectrum.

In general, it should be noted the distributions of σ1 and σ2 values are relatively

insensitive to the differential spectral index that is chosen. We ascertained this by

considering two simulated data sets, one with a differential spectral index of −2.5

and one with a differential spectral index of −3.5. Even for a variation that was

much larger than the accepted range of experimental values for the the UHECR

spectrum [2, 3, 15, 54], the value of σ̄1 increased by only 11%. The value of

σ̄2 remained unchanged. This can be explained by realizing for a steeply falling

spectrum, the overwhelming majority of observed events in either case will occur
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in the first half decade of the measurement. This is a very small effect compared

to the expected statistical fluctuations that would occur between two consecutive

sets of observations.

For the purpose of calculating DI, we can treat the arrival direction of each

individual shower as a two-dimensional elliptical Gaussian distribution with the

parameters σ1, σ2. The size of a bin’s edge, ε, will be allowed to take on a series of

values, ∆θ, which will be in an interval corresponding to a scale length of the sample

or in the case of a smooth distribution, the smallest value that is computationally

feasible. For finite events samples, we will use ∆θ ' 0.5◦. In the case of smooth

distributions we will use a computationally limited value of ∆θ = 1/6◦. The number

of points in each shower direction distribution, NDist, will be determined by the

mean value, <ni>, necessary to assure that the fractional Gaussian fluctuations of

the count, ni, in each bin, do not on average, exceed a predetermined value (i.e. for

5% fluctuations, NDist ' 500). For each value of ε, the probability, Pi(ε), for the

i-th bin will be:

Pi(ε) =
ni

NDist ·NShower

. (10.7)

We calculate DI for each value of ε:

DI(ε) = −
N

∑

i=1

Pi(ε) logPi(ε)

log 1/ε
. (10.8)

We then determine DI to be <DI(ε)> over the specified interval of ε values.

10.2.2 Latitudinal Binning

For the purpose of calculating DI, it is necessary that all bins be equi-sized and

equi-shaped as we vary the size of the side of the bins, ε. While it is impossible to

achieve completely this criterion on the surface of a sphere, we will be able to do

so approximately by adopting a latitudinal binning scheme.

Latitudinal binning is achieved by first dividing the sky into Nδ declinational

(δ) bands where each band has a width

∆θ =
π

Nδ

(10.9)
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For each declinational band, the sky is then divided into Nα,δ bins in right ascension

(α) where:

Nα,δ =

[

2π
∫ δ2

δ1
cos δ dδ

(∆θ)2

]

=

[

2(Nδ)
2
∫ δ2

δ1
cos δ dδ

π

]

. (10.10)

The solid angle, ∆Ωδ of each bin (in steradians) is:

∆Ωδ =
2π

∫ δ2

δ1
cos δ dδ

Nα,δ

, (10.11)

with a minimum value of (∆θ)2 (at the equator) and a maximum value of π
3
(∆θ)2

(at the poles) regardless of the value of Nδ. This provides us with bins that

are all almost the same area and nearly square-shaped (with the exception of

three triangular bins at each pole). The total number of bins in the sky can be

approximated by:

Nsky ' 4π(
Nδ

π
)2 =

4

π
(Nδ)

2. (10.12)

In Figures 10.1 and 10.2, we visualize the latitudinal binning technique for a

series of different Nδ values.

10.2.3 Application to the Calculation of DI

We can now apply the preceding machinery to the calculation of DI: First, we

need to normalize the event count in each bin by its respective bin area, ∆Ωδ:

Pi(ε) =
ni(∆θ)

2

NDistNShower∆Ωδ

=
niπ

2

NDistNShower(Nδ)2∆Ωδ

. (10.13)

If we then realize that ε = 1
Nδ

, we can obtain:

DI(Nδ) = − 1

logNδ

N
∑

i=1

Pi(Nδ) logPi(Nδ). (10.14)

This expression is reminiscent of the the general formula for entropy from

statistical mechanics:

S = −k
∑

r

pr log pr; (10.15)

where pr is the probability of a particle being the r-th state and k is the Boltzmann

constant, which can be thought of as a scaling constant based upon the intrin-

sic scale of the given particle. The information dimension, DI, is an analogous

measurement of the heterogeneity of a given data set.
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(a)

(b)

Figure 10.1. Hammer-Aitoff projection of latitudinal bins for different values of
Nδ—(a): Nδ = 5; (b): Nδ = 12.
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(a)

(b)

Figure 10.2. Hammer-Aitoff projection of latitudinal bins for different values of
Nδ—(a): Nδ = 30; (b): Nδ = 90.
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10.3 Calculating DI for Exposures of Different

Source Models

10.3.1 Exposure-Independent Source Descriptions

We began by examining four different source models independently of detector

exposure. This allows us to calculate the value of the information dimension, DI,

without consideration to the detector aperture or statistical fluctuations from a

finite event sample. The source models are: an isotropic source model, a dipole

source model, a model with seven sources superimposed on an isotropic background,

and a dark matter halo source model.

10.3.1.1 Isotropic Model

The first model that we will consider is an isotropic source model with distri-

bution:

nisotropic = 1. (10.16)

10.3.1.2 Dipole Model

The second is the Centaurus A dipole source model first proposed by Farrar

and Piran [40]. This model has a distribution of arrival directions characterized by

a scaling parameter, α, which can take on any value between −1 and +1 and by θ,

which is the opening angle between a given event arrival direction and the center

of the dipole distribution at Centaurus A. The overall distribution is:

ndipole = 1 + α cos θ. (10.17)

10.3.1.3 Discrete Source Model

The third model that we will consider is one with seven discrete sources super-

imposed on an isotropic background. For simplicity’s sake, we will assume that

all seven sources have an equal intensity indirectly determined by a parameter, Fs,
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which will be defined as the fraction of the entire event sample which originates in

the seven sources. We will define our source direction to be the centroids of the

seven hypothetical point sources proposed by the AGASA collaboration [47]. The

equatorial coordinates used for each point source are listed in Table 10.1

The arrival directions for the events from each source are assumed to be sub-

jected to magnetic smearing. That is, in the course of traveling through space from

the source to the point of observation, the velocity vector of the event is subject

to bending in the galactic and extra-galactic magnetic fields. We assumed that

this bending produces an apparent source that can be characterized by a Gaussian

distribution:

P (∆θ) =
∆θ

λ2
e−

(∆θ)2

2λ2 , (10.18)

where P (∆θ) is the probability that an event will be observed with an opening

angle, ∆θ, from the nominal direction of the apparent source. We will also assume

that the arrival directions of the events from all the sources are subject to the same

degree of magnetic smearing, parameterized by λ◦ = 1.5105 · λ. The parameter,

λ◦, corresponds to the 68% confindence interval in ∆θ. For this simulation study,

we will assume that λ◦ = 5◦. It should be noted that the nominal direction of

the apparent source is not necessarily the direction of the actual source because

the possibility exists that the path of the events in question traveled through large

Table 10.1. Coordinates used for the centers of seven discrete sources. These
coordinates correspond to the centers of the seven clusters reported by the AGASA
Collaboration [47].

Cluster Right Ascension Declination

C1 01h13m 20.6◦

C2 11h17m 56.9◦

C3 18h51m 48.2◦

C4 04h38m 30.0◦

C5 16h02m 23.3◦

C6 14h11m 37.4◦

C7 03h03m 55.5◦
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regions of homogeneous magnetic fields.

10.3.1.4 Dark Matter Halo Model

The fourth model that we will consider is a dark matter halo source model.

Dark matter halos are characterized by a density profile that is assumed to take

the Navarro-Frenk-White (NFW) form [70]:

ρNFW =
ρ◦

r(1 + r/rs)2
, (10.19)

where ρ◦ is a dark matter density parameter, r is the distance from the center of

the halo, and rs is a critical radius. For our source model, we will consider the

contribution of only the four closest significant dark matter halos: the Milky Way,

M31, LMC, and M33. We will assume that ρ◦ is the same for all four sources and

that rs scales with the cube root of the luminosity, L
1
3 . Thus the Milky Way will

have: rs,MW = 10.0 kpc, LMC will have rs,LMC = 0.3·rs,MW = 3.0 kpc, M31 will have

rs,M31 = 1.5 · rs,MW = 15.0 kpc, and M33 will have rs,M33 = 0.4 · rs,MW = 4.0 kpc.

We now calculate the information dimension, DI, for each of the our four models.

Since these are smooth distributions with no statistical fluctuations, we will only

use one, computationally limited value for the number of declinational bands for

each model of Nδ = 1080 (i.e. ∆θ = 1
6

◦
), which implies:

Pi = ni

[

∑

i

ni

]−1

. (10.20)

Using equations 10.14 and 10.20 we can now calculate DI for each of the four

models. The results are in Table 10.2 column 1. Note that three of the four values

of DI exceed the analytical limit of 2 for a 2-D surface.

If we consider the analytic limit for the isotropic case, we have:

DI = −4
(Nδ)

2

π

Pi logPi

logNδ

. (10.21)

If we then substitute in equation 10.20 we get:

DI =
2 logNδ + log 4/π

logNδ

; lim
Nδ→∞

DI(Nδ) = 2. (10.22)

The reason the we obtain values greater than 2 is because we are working with a

finite number of elements on a surface where the total area does not equal (Nδ)
2.
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Table 10.2. The estimated values of DI with Nδ = 1800 for the four proposed
source models for the entire sky independent of any real detector’s aperture (1)
and for the four source models superimposed on the estimated aperture of an
air-fluorescence detector at 40◦ N . These values are mathematical descriptors
of a data set that are whose number of significant digits are determined by how
extensively each bin is sampled (in this case four digits). In the case of a real data
set with a finite number of the observations, the number of significant digits is
constrained by the fluctuations inherent to the sample size.

1 2

DI for Source Model DI for Source Model
SOURCE MODEL without with

Detector Exposure Detector Exposure

Isotropic 2.035 1.967
Dipole Enhancement 2.007 1.945

Seven Source 2.033 1.946
Dark Matter Halo Model 1.999 1.978

10.3.2 Exposure-Dependent Source Descriptions

For the purpose of this simulation study, we assume a hypothetical air-fluores[-

]cence detector located at 40◦ N . This analysis assumes an isotropic distribution for

the azimuthal component of the arrival directions and a zenith angle distribution

that remains constant in time. This is what one would expect for a detector with

360◦ coverage with identical detector units and stable atmospheric conditions. The

acceptance of our detector can thus be defined by two distributions: zenith angle

and sidereal time which are shown in Figure 10.3. The zenith angle distribution is

characterized by 100% acceptance until ∼ 50◦, at which point it drops off dramat-

ically due to the lack of a well-defined profile to assist monocular reconstruction.

The sidereal time distribution is the combination of the seasonal availability of

dark, moonless sky at 40◦ N and seasonal climatic changes in a desert locale (the

rainy season is assumed to extend from February to May which results in a loss of

∼ 30% of exposure).

By defining acceptance this way, we can calculate the exposure of the detector.

By also considering the finite, asymmetric angular resolution, we can then super-
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Figure 10.3. The exposure characteristics for a monocular air fluorescence
detector–(a): The distribution of zenith angles; (b): the distribution of sidereal
times for a detector located at 40◦ N in a desert locale.
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impose the detector exposure upon the various source models that we previously

examined (Figures 10.4 and 10.5 and Table 10.2 column 1). We then obtain an ef-

fective detector response for the air fluorescence detector for each of our four source

models. The results are shown in Figures 10.6 and 10.7. It should be emphasized

that effective detector effect is due to the combined effect of asymmetric sky coverage

and angular resolution smearing. A remarkable consequence of this combination is

the possibility that point sources can take on an apparently asymmetric shapes due

to preferential orientations of the plane of reconstruction for events arriving from

a specific location in the physical sky.

We can now determine the value of DI using the same method as before. The

results are shown in Table 10.2 column 2. It is interesting to note that the dark

matter halo source model now has a larger value for DI than the isotropic source

model. By looking at Figures 10.6 and 10.7, one can verify that the superposition

of the detector exposure and source models actually yields a more uniform apparent

distribution for the dark matter halo source model than it does for the isotropic

source model.

10.4 Calculating DI for Finite Event Samples

So far, we have only considered calculating DI for smooth distributions. From

an experimental standpoint, it is very difficult to collect enough data to obtain

a smooth distribution. This is especially true for UHECRs. In order to make a

measurement of DI, we must first determine what value(s) we should assign to

Nδ. A reasonable approach is to assign a scale length to our sample. Choosing

∆θ = 0.5◦, which approximately reflects the lowest value that can be obtained

from σ2 in equation 10.6, yields Nδ = 360.

However, it can be beneficial to actually calculate DI for a range of values

around Nδ. In Figure 10.8a, we display the values DI(Nδ) over the range Nδ =

[354, 360] for two separate simulated sets where NShower = 500. These sets yield

very similar values for DI over the full range of values for Nδ. However, if we

examine Figure 10.8b we can see that for the same two finite samples, the fractional
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(a)

(b)

Figure 10.4. Density profiles for different source models—(a): isotropic model;
(b): dipole enhancement model (α = 1.0). All figures are shown in a Hammer-Aitoff
projection of equatorial coordinates (right ascension right to left). The highest
density in each panel corresponds to the lightest regions, the lowest density to the
darkest regions.
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(a)

(b)

Figure 10.5. Density profiles for different source models—(a): seven source model
(Fs = 0.28); (b): dark matter halo model (rs = 10 kpc). All figures are shown in a
Hammer-Aitoff projection of equatorial coordinates (right ascension right to left).
The highest density in each panel corresponds to the lightest regions, the lowest
density to the darkest regions.
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(a)

(b)

Figure 10.6. Effective detector response for the different source models—(a):
isotropic model; (b): dipole enhancement model (α = 1.0); All figures are shown in
a Hammer-Aitoff projection of equatorial coordinates (right ascension right to left).
The highest density in each panel corresponds to the lightest regions, the lowest
density to the darkest regions.
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(a)

(b)

Figure 10.7. Effective detector response for the different source models—(a):
seven source model (Fs = 0.28); (b): dark matter halo model (rs = 10 kpc). All
figures are shown in a Hammer-Aitoff projection of equatorial coordinates (right
ascension right to left). The highest density in each panel corresponds to the lightest
regions, the lowest density to the darkest regions.
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Figure 10.8. The variation of DI with respect to Nδ—(a): DI over a range of
values of Nδ for two similar finite event sets that have similar values for DI. (the
dots indicate the values DI for the first set while the stars indicate the values DI

for the second set); (b): the fractional difference in DI for the same two sets over
the range of Nδ values.
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difference between values of DI can fluctuate substantially even over small intervals

of Nδ. While these fluctuations are typically much smaller than the difference in

DI values between any two sets, we will take DI to be <DI(Nδ)> for the interval:

Nδ = [354, 360] in order to minimize the statistical fluctuations in DI between

individual sets. This range was chosen to optimize our computational ability.

To account for the fact that we no longer have a smooth distribution for the

calculation of the values of Pi, we refer back to equation 10.13 to see how to calculate

DI for a finite set of elements. This only requires us to determine a value for NDist.

We can set this value based upon what value we wish for ni in combination with

equation 10.12 (i.e. <ni>= 1
(∆n)2

where ∆n is the fractional Gaussian fluctuation

of a bin with ni =<ni>). Then,

NDist =
4
π
(Nδ)

2 <ni>

NShower

. (10.23)

If we then combine equations 10.9, 10.13, and 10.23; we obtain:

Pi(Nδ) =
ni

<ni>

π3

4(Nδ)4∆Ωδ

. (10.24)

We can then calculate DI from equation 10.14:

DI =

〈

− 1

logNδ

N
∑

i=1

Pi(Nδ) logPi(Nδ)

〉

, Nδ = [354, 360]. (10.25)

Thus, If we want <ni>= 500 and NShower = 500, we find that NDist ' 1.65×105.

If NShower = 2000, we have NDist ' 4.1 × 104.

We now consider two cases: finite event sets with 500 events and finite event

sets with 2000 events. These sets will have the angular resolution characteristics

described in equations 10.5 and 10.6. The exposure will be modeled via the zenith

angle and sidereal time distributions shown in Figure 10.3. Figures 10.9 and 10.10

contains examples of event sets with all four source models and NShower = 500 and

Figures 10.11 and 10.12 contains examples of events sets with all four previously

described source models and NShower = 2000.

In Figures 10.9, 10.10, 10.11, and 10.12, one can see the that these distributions

of arrival directions have a far greater degree of statistical fluctuation than the



134

(a)

(b)

Figure 10.9. Simulated 500 event distributions for different source models — (a):
Isotropic model; (b): dipole enhancement model (α = 1.0). All figures are shown
in a Hammer-Aitoff projection of equatorial coordinates (right ascension right to
left). The highest density in each panel corresponds to the lightest regions, the
lowest density to the darkest regions.
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(a)

(b)

Figure 10.10. Simulated 500 event distributions for different source models — (a):
Seven source model (Fs = 0.28); (b): dark matter halo model (rs = 10 kpc). All
figures are shown in a Hammer-Aitoff projection of equatorial coordinates (right
ascension right to left). The highest density in each panel corresponds to the lightest
regions, the lowest density to the darkest regions.
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(a)

(b)

Figure 10.11. Simulated 2000 event distributions for different source models —
(a): Isotropic model; (b): dipole enhancement model (α = 1.0). All figures are
shown in a Hammer-Aitoff projection of equatorial coordinates (right ascension
right to left). The highest density in each panel corresponds to the lightest regions,
the lowest density to the darkest regions.
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(a)

(b)

Figure 10.12. Simulated 2000 event distributions for different source models —
(a): seven source model (Fs = 0.28); (b): dark matter halo model (rs = 10 kpc).
All figures are shown in a Hammer-Aitoff projection of equatorial coordinates (right
ascension right to left). The highest density in each panel corresponds to the lightest
regions, the lowest density to the darkest regions.
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smooth distributions shown in Figures 10.6 and 10.7. Because of the fluctua-

tions in our simulated event samples, the value of DI varies significantly (see Fig-

ures 10.13 and 10.14) from one simulated set to the next. In Figures 10.13 and 10.14,

we examine the distribution of DI values for ∼ 500 sets (of 500 and 2000 events

respectively). We see that the distribution of 500 event samples have both a lower

mean value and larger width than the 2000 event samples.

10.5 Application to Anisotropy Analysis

We now need to develop a scheme by which we can apply fractal dimensionality

analysis to a real data set. In the case of a real data set, we will be dealing with

only one value of DI. By itself DI is insufficient to characterize the data set; DI

fluctuates a great deal due to variation in NShower. However, a comparison between

the value of DI for a real event sample and a distribution of DI values (with the

same NShower and NDist values as the real data) for a series of simulated data sets

of a given source model does provide a viable measurement of anisotropy.

We can demonstrate this by considering a single simulated event sample gen-

erated with an isotropic source model. We will suppose this sample to be our

“real” data. We consider the isotropic simulated event samples shown in Fig-

ures 10.9a and 10.11a. We will once again stipulate that <ni>= 500 which means

that in the case of NShower = 500, we have: NDist ' 1.6 × 105 which leads to

DI = 1.89715 and in the case of NShower = 2000, we have: NDist ' 4 × 104 which

leads to DI = 1.93920.

In Figures 10.13 and 10.14, we demonstrated that for a fixed scaling parameter

the distribution of DI values for a large number of simulated sets fits well to a

Gaussian curve. By establishing the relationship between the distribution of DI

values and the scaling parameter in each model, we can establish a 90% confidence

interval on the scaling parameter for that model.
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Figure 10.13. Comparison of distributions ofDI values for ∼ 500 sets of 500 events
between the isotopic source model (shaded) and the other three source models —
(a): Dipole enhancement model vs. isotropic model (α = 1.0); (b): Seven source
model vs. isotropic model (Fs = 0.28); (c): Isotropic model vs. Dark matter halo
source model (rs = 10 kpc). The vertical line corresponds to the value of DI for
the “real” 500 event sample. In all cases the distributions of DI values fit well to a
Gaussian curve.
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Figure 10.14. Comparison of distributions of DI values for ∼ 500 sets of 2000
events between the isotopic source model (shaded) and the other three source
models — (a): Dipole enhancement model vs. Isotropic model (α = 1.0); (b):
Seven source model vs. Isotropic model (Fs = 0.28); (c): Isotropic model vs. Dark
matter halo source model (rs = 10 kpc). The vertical line corresponds to the value
of DI for the “real” 2000 event sample. In all cases the distributions of DI values
fit well to a Gaussian curve.
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10.5.1 Dipole Enhancement Source Model

In the case of the dipole enhancement source model in equation 10.17, the

scaling parameter is α. By varying α between −1 and 1, we develop a curve which

will show the relationship between DI and α. By considering the actual value of

DI for the “real” data set, we then establish a nominal value for α and a 90%

confidence interval. The results for both NShower = 500 and NShower = 2000 are

shown in Figures 10.15 and 10.16. In the case of our simulated isotropic set with

NShower = 500, α = 0.02 ± 0.21 with a 90% confidence interval of [−0.29, 0.36]. In

the case of our simulated isotropic set with NShower = 2000, α = 0.075±0.085 with a

90% confidence interval of [−0.065, 0.24]. We notice that in Figures 10.15 and 10.16,

there are potentially two suitable intervals of α that possess similar values of DI.

This emphasizes the necessity of making density plots to assure by visual inspection

that the appropriate interval is chosen.

10.5.2 Seven Source Model

In the case of the seven source model, the scaling parameter is Fs, the fraction

of the total event sample that is produced by the discrete sources. By varying

Fs between 0 and 0.40, we develop a curve which shows the relationship between

DI and Fs. By considering the actual value of DI for the “real” data set, we then

establish a nominal value for Fs and a 90% confidence upper limit for Fs. The results

for both NShower = 500 and NShower = 2000 are shown in Figures 10.17 and 10.18.

In the case of our simulated isotropic set with NShower = 500, we have a 90%

confidence upper limit of Fs = 0.16. In the case of our simulated isotropic set with

NShower = 2000, we have a 90% confidence upper limit of Fs = 0.04. This tells

us that our “real” data can have, at most, 16% (for 500 events) or 4% (for 2000

events) of these events coming from the seven sources.

10.5.3 Dark Matter Halo Source Model

In the case of the dark matter halo source model in equation 10.19, the variable

parameter is rs, the critical radius in the NFW profile [70]. By varying rs between
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Figure 10.15. Study of the dependence of DI upon α for a dipole enhancement
source model—(a): NShower = 500 α = .02 ± .21; (b): NShower = 500 (zoomed);
90% confidence interval: [−0.29, 0.36]; In each case, the solid solid horizontal line
indicates the value of DI for the simulated isotropic data set. The vertical lines
in (b) and (d) indicate the projection of the nominal value and 90% and 95%
confidence intervals of α on the x-axis.
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Figure 10.16. Study of the dependence of DI upon α for a dipole enhancement
source model—(a): NShower = 2000; α = .075±.085; (b): NShower = 2000 (zoomed);
90% confidence interval: [−0.065, 0.24]. In each case, the solid solid horizontal line
indicates the value of DI for the simulated isotropic data set. The vertical lines
in (b) and (d) indicate the projection of the nominal value and 90% and 95%
confidence intervals of α on the x-axis.
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Figure 10.17. Study of the dependence of DI upon Fs for the seven source
model—(a): NShower = 500; (b): NShower = 500 (zoomed); 90% confidence upper
limit=0.16. In each case, the solid solid horizontal line indicates the value of DI

for the simulated isotropic data set. The vertical lines in (b) and (d) indicate the
projection of 90% and 95% confidence upper limits of rs on the x-axis.
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Figure 10.18. Study of the dependence of DI upon Fs for the seven source
model—(a): NShower = 2000; (b): NShower = 2000 (zoomed); 90% confidence upper
limite=0.04;. In each case, the solid solid horizontal line indicates the value of DI

for the simulated isotropic data set. The vertical lines in (b) and (d) indicate the
projection of 90% and 95% confidence upper limits of rs on the x-axis.
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5.0 kpc and 15.0 kpc we develop the curve which will demonstrate the dependence

of DI upon rs. We can then show that the dark matter halo source model can

be rejected with at level ≥ 3.6σ for NShower = 500 and at a level of ≥ 7.0σ for

NShower = 2000 for the full range of hypothesized values for rs. The results are

shown in Figure 10.19.

10.6 Discussion

Fractal dimensionality has several advantages over conventional anisotropy tech-

niques. First of all, it naturally accommodates angular resolution. This is extremely

important when considering event sets with asymmetric errors, when analysing

event sets with variable values for the angular resolution (e.g., dependent on energy

or geometry), or when combining multiple data sets from different detectors for a

single analysis.

Another advantage that fractal dimensionality possesses is the ability to accom-

modate any aperture. Because this method makes a relative comparison between

a sample and simulations using the same aperture, the physical aperture is simply

folded into the analysis. This once again allows the combination of data from

multiple detectors with very different apertures. It also allows the analysis of

extremely complicated apertures without the need to include normalizing factors

that needlessly complicate the predictability of the Poisson fluctuations in the data

sample.

Perhaps the most striking feature of the fractal dimensionality method is that

it only requires a single measurement of one’s data. While fractal dimensionality

will not always provide better statistical significance than a direct measurement for

a specific anisotropy, the fact that one considers only a single measurement of the

data, for any number of potential anisotropic models, provides one the means to

simultaneously reject or accept all of those models without the ensuing statistical

penalty.

A possible way of increasing the sensitivity of the fractal dimensionality method

is by considering the general case of case of Dq. By varying the value of q to
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Figure 10.19. Comparison of the distribution of DI values for a dark matter halo
source model with a full range of hypothesized values for rs—(a): NShower = 500,
the dark matter halo model can be rejected at a level ≥ 3.6σ; (b): NShower = 2000,
the dark matter halo model can be rejected at a level ≥ 7.0σ. In each case, the
solid horizontal line indicates the value of DI for the simulated isotropic data set.



148

something other than 1, it might be possible to increase the sensitivity of this

method to various anisotropies.

The fractal dimensionality method does have some drawbacks. First and fore-

most is the potential for multiple solutions as was demonstrated in the dipole

source model above. The method cannot be applied blindly. It requires a careful

inspection of both the data sample and the simulated samples in order to resolve

possible ambiguities. Another drawback is the amount of computation required

to calculate DI for a large number of simulated data sets. Producing just the

plots in Figure 10.16a consumed the equivalent of ∼ 1000 CPU hours on 1GHz

Athlon machine. Another limitation is the potential for different source models to

effectively cancel each other out and yield a potentially deceiving value of DI that

resembles that of an isotropic source. One solution for this is to separately consider

the value of DI for different celestial regions in the data. Of course, this will incur

a statistical penalty.

Two particularly useful roles for fractal dimensionality analysis are (a): as a

first test to ascertain if a sample possesses the same heterogeneity as the expected

isotropic background and (b): as a wholly independent observable that can be used

to confirm the results of a direct measurement.



CHAPTER 11

APPLICATION OF FRACTAL

DIMENSIONALITY TO THE

GLOBAL DIPOLE SEARCH

The information dimension, DI [66, 67], is a measure of the overall heterogeneity

of a data sample. The smaller the value of DI, the more heterogeneous the sample

is. From Chapter 10, the basic formula for calculating DI is:

DI =

〈

− 1

logNδ

N
∑

i=1

Pi(Nδ) logPi(Nδ)

〉

, Nδ = [354, 360], (11.1)

where Nδ is the total number of declinational bins (with a range of values between

354 to 360) and:

Pi(Nδ) =
ni

<ni>

π3

4(Nδ)4∆Ωδ

, (11.2)

with ni being the number of counts in a particular latitudinal bin, <ni> being the

average bin count over the entire sample and ∆Ωδ being the area of that particular

latitudinal bin. A detailed description of this method was given in the previous

chapter. In this chapter, we report the results of applying this novel technique.

While the measurement of DI is not necessarily the most sensitive tool available,

it allows one to rule out any number of potential anisotropic source models with

a single measurement. The general scheme that we followed is similar to what we

used in the case of the dipole analysis previously reported in Chapter 8.

1. We calculated the value of DI for the real data sample.

2. We created a total of 20,000 simulated data samples, 1000 each for 0.1

increments of α from -1.0 to 1.0. In Figure 11.1 we can see that distribution

of DI values for each α-value is Gaussian.
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Figure 11.1. The distribution of DI values for simulated data sets with a single
α-value—(a) the galactic dipole source model with α = 1.0; (b) the galactic dipole
source model with α = −1.0.
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3. We constructed a curve consisting of the mean and standard deviation of DI

for each value of α.

4. We then ascertained the preferred value of α and the 90% confidence inter-

val for each dipole source model by referring the intersections of the 90%

confidence interval curves with the actual value of DI for the real data.

The results for all three dipole source models are shown in Figures 11.2, 11.3,

and 11.4. The determination of α for both methods are compared in Table 11.1.

The 90% confidence intervals for the determination α via the use of DI are sub-

stantially larger. This is to be expected because the value of DI is a single number

that contains no a priori preference for a specific source model. Furthermore, in

two cases there is a second solution to α that is excluded by considering the results

of the <cos θ> method. The important observation is that the results of the two

methods are consistent. One advantage of the DI method is that we can state all

three 90% confidence intervals jointly, since they are all considering only a single

measurement on the real data. In the case of the <cos θ> method, we would have

to consider a broader confidence interval for each individual model in order to have

a simultaneous 90% confidence level for all three models.

A possible future extension of this work is to employ a multi-parameter fit to

improve the statistical precision. The information dimension, DI, and <cos θ> can

be used simultaneously to narrow the confidence intervals for the dipole function

Table 11.1. Comparison of the estimation of α via direct fit, the value of <cos θ>
for the dipole function, and the value of DI.

1 2 3

α determined α determined α determined
SOURCE MODEL without considering by the value of by the value of

angular resolution <cos θ> DI

Galactic −0.010 ± 0.055 0.005 ± 0.055 0.035 ± 0.09
Centaurus A −0.035 ± 0.060 −0.005 ± 0.065 0.040 ± 0.095

M87 −0.005 ± 0.045 −0.010 ± 0.045 0.020 ± 0.100
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Figure 11.2. Estimations of the value of α for a dipole source models. The curves
demonstrate the dependence of DI upon α. The horizontal lines represent the value
of DI for the real data—(a) the galactic dipole source model for α = [−1.0, 1.0];
(b) the critical region for the galactic dipole model: α = 0.035 ± 0.090 with a 90%
confidence interval of: [−0.100, 0.190].
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Figure 11.3. Estimations of the value of α for a dipole source models. The curves
demonstrate the dependence of DI upon α. The horizontal lines represent the value
of DI for the real data—(a) the Centaurus A dipole source model for α = [−1.0, 1.0];
(b) the critical region for the Centaurus A dipole model: α = 0.040 ± 0.095 with a
90% confidence interval of: [−0.105, 0.200].



154

(c)

1.9

1.91

1.92

1.93

1.94

1.95

-1 -0.5 0 0.5 1
α

D
I

68% Conf. Upper Limit
95% Conf. Upper Limit

(d)

1.92

1.925

1.93

1.935

1.94

1.945

1.95

-0.5 -0.25 0 0.25 0.5
α

D
I

90% Conf. Upper Limit
95% Conf. Upper Limit

Figure 11.4. Estimations of the value of α for a dipole source models. The curves
demonstrate the dependence of DI upon α. The horizontal lines represent the value
of DI for the real data—(a) the M87 dipole source model for α = [−1.0, 1.0]; (b) the
critical region for the M87 dipole model: α = 0.020 ± 0.10 with a 90% confidence
interval of: [−0.26, 0.30].
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because the two quantities are not a priori correlated. With 50% more data already

collected and another 50% more to be collected, we anticipate to perform such a

study after the conclusion of HiRes observation.



APPENDIX

AN EXAMINATION OF THE SIGNIFI-

CANCE OF THE REPORTED AGASA

CLUSTERING PHENOMENON

In 1999 [47] and again in 2001 [25], the AGASA collaboration reported observing

what eventually became seven clusters (six “doublets” and one “triplet”) in its

event set with estimated energies above ∼ 3.8× 1019 eV. Several different attempts

have been made to ascertain the significance of these clusters with values chance

probabilities as low as 4 × 10−6 [49] or as high as 0.19 [50]. However, the analyses

that have been presented by the AGASA collaboration and others did not account

for the angular sensitivity of the AGASA detector.

In the study reported in this appendix, we use simulated event sets in order to

determine AGASA’s intrinsic sensitivity to the observed clustering phenomenon.

By doing so, we show that the actual sensitivity of the AGASA array to the observed

phenomenon is much lower than the apparent significance originally reported.

A.1 Determining the Significance of the Observed

AGASA Clustering Phenomenon

In order to determine the significance of the measured result, we compare the

<cos θ>[0◦,10◦] value from the reported AGASA data to a distribution of values for

many simulated AGASA-like event sets. In the simulations, we assume the events to

be isotropically distributed in right ascension and that they have the declinational

distribution presented in Uchiori et al. [55]. Following the lead of Evans et al. [56],

we fit a normalized polynomial to this distribution:
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N(δ) = 0.323616 + 0.0361515δ − 5.04019 × 10−4δ2 +

5.539141 × 10−7δ3; (A.1)

where N(δ) holds for δ = [−8◦, 87.5◦] and the maximum value of N(δ) is 1.

By simulating large numbers of sets, each with the same number of events

as the real data set, we can then establish what the expected a distribution of

<cos θ>[0◦,10◦] values is for isotropic event samples. In Figure A.1a we show the

distribution of <cos θ>[0◦,10◦] values that we obtained for 1000 simulated isotropic

data sets each of which contains 59 simulated events with energies (and thus angular

resolutions) randomly sampled from the known values of the AGASA data set.

The distribution has a mean value of 0.99250 and a standard deviation of 0.00033.

This allows us to state the significance of the clustering phenomenon in the actual

AGASA data set at 3.1σ or a chance probability of ∼ 10−3.

A.2 Establishing the Sensitivity of AGASA to

Clustering Phenomena

We now determine the sensitivity of the AGASA detector to the observed clus-

tering phenomenon. This can be done by calculating the value of <cos θ>[0◦,10◦] for

sets that contain artificially inserted clusters whose angular separation is defined by

the intrinsic angular resolution of the AGASA detector. In particular, the AGASA

collaboration states that they find seven clusters consisting of six doublets and one

triplet in a total set of 59 events. Thus, we calculate the value of <cos θ>[0◦,10◦] for

simulated sets that contain 59 events with six doublets and one triplet. Figure A.1b

shows the distribution of <cos θ>[0◦,10◦] values with a mean value of 0.99310 and a

standard deviation of 0.00030.

What is remarkable about this distribution is that only 8% of the time does

its value exceed that of the actual data sample. This suggests that the AGASA

clustering signal is enhanced by a chance upward fluctuation due to nominal arrival

directions which are actually closer together than what one would, on average,

expect given the angular resolution.
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Figure A.1. Distributions of <cos θ>[0◦,10◦] values for 1000 simulated sets—(a):
isotropic simulated sets; (b): simulated sets with six “doublets” and one “triplet”
artificially inserted. In both cases, the vertical line corresponds to the value of
<cos θ>[0◦,10◦] for the reported AGASA data.



159

Next, we do a one-to-one comparison between the values in the distributions

shown in Figures A.1a and A.1b. This done by repeated random sampling of

the <cos θ>[0◦,10◦] value from each of the two distributions in Figure A.1. The

scatter plot of the one-to-one comparisons of the values of <cos θ>[0◦,10◦] for the

simulated sets with and without clustering is shown in Figure A.2. We find that

the clustering signal of the isotropic simulation exceeded the signal of the set with

artificial clustering ∼ 9% of the time.

Figure A.2. A one to one comparison of the value of <cos θ>[0◦,10◦] for simulated
sets with and without clustering at the level reported by AGASA
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A.3 Conclusion

We conclude that while AGASA did indeed observe a clustering signal with a

chance probability of ∼ 10−3, this is likely primarily due to a random a fluctuation

in the nominal arrival directions of the observed events. The AGASA detector

simply does not have the prerequisite angular resolution to observe clustering at

the rate that is claimed with a significance better than a chance probability of

∼ 10−1. A much better determination of the presence of clustering can be expected

with superior angular resolution such as that provided by HiRes stereo data [53]

and eventually by Auger hybrid data [71].
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