The Composition of Ultra High Energy Cosmic Rays Through Hybrid Analysis at Telescope Array

Elliott Barcikowski PhD Defense University of Utah, Department of Physics and Astronomy Thursday, September 29th, 2011

What are cosmic rays?

- Relativistic atomic nuclei originating outside the Solar System
 - "Ultra High Energy" \rightarrow E > 10¹⁷eV
- First discovered by Victor Hess by measuring radiation in high altitude balloon flights (1911-1913)
 - Awarded the Nobel Prize in physics in 1936
- Produced by the most energetic processes in the Universe
 - Galactic: Super novae
 - Extragalactic: Active Galactic Nuclei

The All-Particle Spectrum

Cosmic Ray Spectra of Various Experiments

- Steady power law over many decades in energy
- Large flux at low energies
- Low flux for Ultra High Energies
- Much higher in energy than may be produced in an accelerator

The All-Particle Spectrum

- Four clearly defined spectral features
 - Knee
 - 2nd Knee
 - Ankle
 - Cutoff

The All-Particle Spectrum

Four clearly defined spectral features

- Knee
- 2nd Knee
- Ankle
- Cutoff

Cutoff

- Predicted in 1966 by Greisen, Kuzmin, and Zatsepin
 - Coined the "GZK" Cutoff

$$p^{+} + \gamma \to \Delta^{(1232)} \to \begin{cases} p^{+} + \pi^{0} \\ n + \pi^{+} \end{cases}$$

- First observed by HiRes
- Requires protons
- Alternative: acceleration limit?

Ankle

- Produced by pair production combined with GZK "pile up"
 - First shown by Berezinsky, 1988

$$p^+ + \gamma \rightarrow p^+ + e^+ + e^-$$

- Requires protons
- Alternative: extra-Galactic transition?

The Extensive Air Shower

- Primary cosmic rays interact high in the Earth's atmosphere
 - EASs result in billions of secondary particles
- Fluorescence photons produced at core
 - May be observed with telescopes in the UV
- Many particles reach the ground
 - May be observed with ground arrays

Air Shower Simulations (CORSIKA)

Simulated air shower – E = 10^{15} eV proton, $\theta = 45^{\circ}$

red – $e^{+/-}$, γ green – $\mu^{+/-}$ blue – hadrons ($\pi^{0/+/-}$, K^{0/+/-}, p, n)

Gaisser-Hillas parameterization

$$N(X) = N_{\max} \left(\frac{X - X_0}{X_{\max} - X_0}\right)^{\frac{X_{\max} - X_0}{\lambda}} \exp\left(\frac{X_{\max} - X}{\lambda}\right)$$

Proton and Iron X_{max} Distributions

- Proton X_{max} distributions are deeper and wider than iron distributions
- Resulting iron X_{max} is narrower than that from proton primaries
- The distributions overlap
 - Good resolution in X_{max} is critical to successfully resolve composition

The Telescope Array Experiment

The Telescope Array Experiment

Black Rock Mesa and Long Ridge Fluorescence Detectors

The Telescope Array Experiment

Middle Drum Fluorescence Detector

BRM/LR Fluorescence Detectors (I)

Image produced by 16x16 PMT "Cluster Box"

3.3 m diameter mirrors collect light and focus it on the cluster box

BRM/LR Fluorescence Detectors (II)

Event: 2008/06/02 07:56:13

- PMT provide 2D image with ~l° angular resolution
- FADC digitization provides a PMT "trace" with 100 ns binning

Surface Array

- 2 x 3 m² scintillator plastic
- 2 photo-multiplier tubes
 - I per scintillator layer
- Self powered with solar panels
- Radio communication facilitates data acquisition and trigger

The Telescope Array Hybrid Detector

- FD observes longitudinal development close to shower core
- SD observes lateral distributions of particles
- Hybrid data allows for the observation of X_{max} with well constrained geometries.

Detector Simulation

Detector Simulation

Detector Simulation

Thrown MC Distributions

- Simulated MC distributions must reflect underlining physics
- Must test the boundaries of the detector
- Data and MC are identical
 - Both are reconstructed with the SAME programs
- Distributions from MC must match those in the data!

Hybrid Geometry Reconstruction (I)

Directions of triggered FD PMTs constrain event geometry to a Shower Detector Plane (SDP) $\chi^2_{SDP} = \sum \vec{n} \cdot \vec{t}_i W_i$ Cosmic ray event geometries: $\rm R_{\rm p}$ -- distance of closest approach -Shower Axis ψ -- Angle inside SPD t_0 -- Time at R_p Shower Detector Zenith plane $t(\chi) = t_0 + \frac{R_p}{c} \tan\left(\frac{\pi - \psi - \chi}{2}\right)$ Detector Impact Point

Hybrid Geometry Reconstruction (I)

Hybrid Geometry Reconstruction (II)

- Each triggered FD PMT and SD detector provides timing data
- Construct a 4 component χ² function using all available information

 $\chi^2_{GFOM}(x, y, \theta, \varphi, t_c) =$

 $\chi^2_{COC} + \chi^2_{SDP} + \chi^2_{SD} + \chi^2_{FD}$

Minimize in 5 parameters

Longitudinal Profile Reconstruction

 Using reconstructed geometry use Inverse Monte Carlo to find the best N_{max}, X_{max}.

$$N(X) = N_{\max} \left(\frac{X - X_0}{X_{\max} - X_0}\right)^{\frac{X_{\max} - X_0}{\lambda}} \exp\left(\frac{X_{\max} - X}{\lambda}\right)^{\frac{X_{\max} - X}{\lambda}} \exp\left(\frac{X_{\max} - X}{\lambda}\right)^{\frac{X_{\max} - X}{$$

$$\chi^{2}_{PRFL}(N_{\max}, X_{\max}) = \sum_{i} \left(\frac{n_{i} - \Phi_{i}A_{i}}{\sigma_{i}}\right)^{2}$$

GH fit leads to calculation
 of the shower energy
 dE

$$E_{cal} = \int <\frac{dE}{dX} > N(X)dx$$

Missing Energy Correction

- Some shower energy results in µ and v particles and does not result in fluorescence
- This "Missing Energy" must be corrected for in reconstruction
- CORSIKA is used estimate the average missing energy

Data Set and Quality Cuts

- All hybrid data before implementation of hybrid trigger
 - May 2008 September 2010
- Results in 454 hybrid events and 74 hybridstereo events

Cut	BR Events	LR Events
None	3085	2720
Good Weather	1933	1696
$E > 10^{18.5} eV$	521	439
$\theta < 55^{\circ}$	432	327
χ^2_{geom} / DOF < 5	429	367
$\chi^2_{\ prfl} \ / \ DOF < 5$	350	327
$X_{low} < X_{max} < X_{high}$	324	291
$\psi < 130^{\circ}$ && track time > 7 µs	294	269
core inside SD array	276	252

Energy Scale Treatment

27% difference between FD and SD energies

Use hybrid events where the SD trigger aperture is flat

Resolution Studies (Zenith)

Resolution Studies (R_p)

Resolution Studies (Energy)

Resolution Studies (X_{max})

Data/Monte Carlo (X_{core})

Data/Monte Carlo (Zenith Angle)

Data/Monte Carlo (Track Length)

Data/Monte Carlo (ψ)

Data/Monte Carlo (R_p)

Data/Monte Carlo (Energy)

Data/Monte Carlo (X_{max})

Compatibility with MC

- Using the binned X_{max} distributions (slides 55-57) we may use statistical tests to compare the distributions
- Completely excludes iron
 MC until 10^{19.3} eV

MC Study: Mean X_{max}

- The <X_{max}> can provide a single measurement to quantify the distributions in each energy bin
- The fits shown here for proton and iron MC will be used to compare against the data

Mean X_{max}

- The mean X_{max} from the data agrees with proton MC
- The data is shifted 10 g/cm² shallower than the MC
- Would find better agreement with different hadronic model

QGSJet01

QGSJet01??

- The mean X_{max} from the data agrees with proton MC
- The data is shifted 10 g/cm² shallower than the MC
- Would find better agreement with different hadronic model

QGSJet01

Elliott Barcikowski, PhD Defense September 29, 2011

Shifted Xmax (E > $10^{19.3}$ eV)

Compatibility of shifted X_{max} with MC

- Statistical tests of the shifted distributions provide compatibility of the shape
- Iron MC is excluded below 10^{18.8} eV
- Otherwise the statistical power is limited above 10^{18.8} eV

Conclusions

- This study shows very clear compatibility with proton MC and exclude iron MC below 10^{19.3} eV
- Data shows a 10 g/cm² shift in X_{max} from QGSJetII protons
- Measurement of width and "shape" of X_{max} distributions corroborate the proton compatibility below 10^{18.8} eV
- This result supports the GZK cutoff and pair-production theories to explain features of the cosmic ray spectrum

Elliott Barcikowski, PhD Defense September 29, 2011

Electromagnetic Cascade (Heitler Model)

$$N(X) = 2^{n} = 2^{X/\lambda}$$
$$E_{p}(X) = \frac{E_{0}}{N(X)} = \frac{E_{0}}{2^{X/\lambda}}$$

$$N_{\text{max}} = E_0 / E_c$$

$$X_{\text{max}} = \lambda \frac{\ln(E_0 / E_c)}{\ln(2)} \rightarrow \lambda \frac{\ln(E_0 / (AE_c))}{\ln(2)}$$

- High energy photons pair produce producing e^{+/-}
- e^{+/-} bremsstrahlung producing photons
- Critical energy when electrons lost to ionization is dominate
 - 84 MeV in the atmosphere
- X_{max} may be observed with UV sensitive telescopes

Average Energy Deposited in CORSIKA

- CORSIKA simulations are used to calculate the average energy deposited by air shower
- Proton and iron
 simulations agree above s
 = 0.4
- "age" is related to X as

$$s = \frac{3X}{2X + X_{\text{max}}}$$

Fluorescence Yield

N₂ fluorescence lines as measured by the FLASH experiment

Kakimoto fluorescence yield provides the number of photons per energy deposited

6000

8000

altitude above sea level [m]

10000

Model Dependence of X_{max}

- Difference models of hadronic physics produce slightly different X_{max}
- Model parameters must be extrapolated from accelerator results

Extra Resolutions

Resolution Studies (Cascade Energy)

Resolution Studies (X_{max} in Energy)

Extra Comparison Plots

Data/Monte Carlo (_{XGEOM}/DOF)

Data/Monte Carlo (χ_{PRFL} /DOF)

Data/Monte Carlo (Azimuth)

Data/Monte Carlo (Y_{core})

454

7.046

7.591

- Clear elongation rate in the mean (red circles)
- Statistics are too poor to draw any conclusions above 10^{19.3} eV
 - Marked with solid line
- MC is used to aid in interpretation of physics