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Abstract

Air fluorescence detectors traditionally determine the dominant chemical composition of the ultrahigh energy cosmic ray flux by com-
paring the averaged slant depth of the shower maximum, Xmax, as a function of energy to the slant depths expected for various hypo-
thesized primaries. In this paper, we present a method to make a direct measurement of the expected mean number of protons and iron
by comparing the shapes of the expected Xmax distributions to the distribution for data. The advantages of this method includes the use
of information of the full distribution and its ability to calculate a flux for various cosmic ray compositions. The same method can be
expanded to marginalize uncertainties due to choice of spectra, hadronic models and atmospheric parameters. We demonstrate the tech-
nique with independent simulated data samples from a parent sample of protons and iron. We accurately predict the number of protons
and iron in the parent sample and show that the uncertainties are meaningful.
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Fig. 1. Simulated cosmic ray events show shower-to-shower fluctuations
which cause a large overlap between proton (black) and iron (red) events
when plotted as a function of Xmax and log(E/eV). The QGSJet hadronic
model was used under the CORSIKA extensive air shower simulator to
model the shower profiles. These events were then passed through a
simulation of the HiRes stereo detector response. (For interpretation of
the references in colour in this figure legend, the reader is referred to the
web version of this article.)
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1. Introduction

Measurements of the energy spectrum, composition and
arrival direction distributions elicit clues to the origin of
cosmic rays. Since a direct measurement and identification
of the cosmic ray primaries is not possible at these energies,
we depend on indirect methods to understand the chemical
composition of the cosmic ray flux. The methods vary with
the detector type. In ground array-type cosmic ray detec-
tors, composition analyses typically focus on the energy-
dependence of the muon to charged particle ratio, which
is thought to signify the change in primary particle compo-
sition as a function of energy [1]. Air fluorescence experi-
ments, on the other hand, image the shower development
in the atmosphere and obtain information about the pri-
mary composition from Xmax, the slant depth at which the
particle count in the cosmic ray air shower is a maximum.

Showers induced by protons tend to reach the maximum
of the shower development at larger slant depths than
showers induced by heavier elements. Since shower-
to-shower fluctuations are large, a determination of the
primary type for individual showers is not possible, but
averaged quantities like the so-called elongation rate have
been successfully used to understand the composition of
the cosmic ray flux on a statistical basis. The elongation
rate is defined as the slope of the mean height of shower
maximum measured in units of slant depth, hXmaxi, versus
the logarithm of the primary cosmic ray energy observed.
The measured elongation rate is compared to that of sim-
ulated proton and iron primaries to assess whether the cos-
mic ray composition is proton-like or heavier [2–4].

Due to the relative insensitivity of ultrahigh energy cos-
mic ray detectors to small shifts in composition between
various low-Z or high-Z primaries, their observations have
historically been compared to what is expected for ‘‘pro-
tons’’ and ‘‘iron’’, with the two elements as stand-ins for
all light and heavy elements. For hXmaxi (see Section 4),
we expect �100 g/cm2 difference between protons and iron.
However, as shown in Fig. 1, large shower-to-shower fluc-
tuations and the detector resolution cause a significant
overlap in their distributions (�40–70 g/cm2).

Here, we present a method to answer the question: in a
fluorescence data sample where one has measured Xmax for
each event, what is the best estimate for the expected mean1

number of protons and iron from that experiment? This
question is not directly answered through other methods.
Once the answer to this question is obtained, the mean
1 Here we will refer to the mean although we are taking a Bayesian
approach. The number of protons, iron, etc., predicted by the likelihood
can better understood as the best estimate of the ‘‘true’’ number of protons
and iron given the universe’s cosmic ray flux and the HiRes aperture
rather than the mean number expected for an infinite number of HiRes
experiments. (Here the universe’s cosmic ray flux is assumed to be
homogeneous and isotropic as there is currently no evidence to the
contrary. However, there is nothing to prevent us binning Xmax as a
function of sky coordinates.) Regardless, for brevity, we use frequentist
language.
number can be converted to a flux for protons and iron.
This method can be expanded to evaluate the contribution
of any chemical element. Further, this method uses more
information than averaged quantities like the elongation
rate; it makes use of the shape of the Xmax distribution
rather than simply its mean. Lastly, the technique allows
the introduction of systematic uncertainties and prior
knowledge or lack thereof concerning the composition
spectra, hadronic generators, parameters concerning the
extensive air shower and atmospheric uncertainties.

In brief, the technique for extracting the cosmic ray
composition essentially requires us to find the best normal-
izations for the ‘‘hypothesized’’ Xmax distributions for pro-
tons and iron. By ‘‘best’’ we mean the sum of the expected
mean events for the hypothesized distributions that best
match the expected mean for the Xmax distribution for
data. The chance that the combined hypothesized distribu-
tions match the parent distribution for data is proportional
to the likelihood, l(Djp, f). The likelihood l(Djp, f) is maxi-
mized for the best estimate for the expected mean number
of protons (p) and iron (f) where D denotes the data sam-
ple. The variables p and f sum to the expected mean num-
ber of data events, p + f = d. Note the expected means for
protons and iron add to the expected mean number of
events and not to the total events in the given data sample.

We develop the method using simulated stereoscopic
data for the High Resolution Fly’s Eye (HiRes) experiment
in Utah. The method is tested with many independent data
sets that originate from a simulated parent data set with
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ptrue proton events generated with an E�ap spectrum and
ftrue iron events generated with an E�af spectrum. Each
bin of this parent distribution is fluctuated according to
Poisson statistics to build a set of independent simulated
data distributions with which we test the method of pre-
dicting p and f. A general description of this technique is
given in [5,6]. To include typical instrumental uncertainties
in our study, we will apply the method to a particular cos-
mic ray experiment, the HiRes stereo experiment. All sim-
ulated showers used in this paper have been subjected to
the full HiRes stereo simulation and reconstruction.

The paper is organized as follows: Section 2 gives an
overview of the HiRes detector, which we use as the detec-
tor in the simulated data. Section 3 gives a description of
the likelihood method used to find the most likely mixture
of protons and iron in the simulated data. In Section 4, the
likelihood method is first modified to account for our igno-
rance of the proton and iron spectra, and then demon-
strated with simulated data samples. Finally, Section 5
states conclusions and results.

2. The HiRes detector

HiRes is an air fluorescence experiment with two sites
(HiRes 1&2) at the US Army Dugway Proving Ground
in the Utah desert (112� W longitude, 40� N latitude, ver-
tical atmospheric depth 860 g/cm2). The two sites are sepa-
rated by a distance of 12.6 km.

Each of the two HiRes ‘‘eyes’’ comprises several tele-
scope units monitoring different parts of the night sky.
With 22 (42) telescopes with 256 photomultiplier tubes
each at the first (second) site, the full detector covers about
360� (336�) in azimuth and 3�–16.5� (3�–30�) in elevation
above horizon. Each telescope consists of a mirror with
an area of about 5 m2 for light collection and a cluster of
photomultiplier tubes in the focal plane.

A cosmic ray primary interacting in the upper atmo-
sphere induces an extensive air shower which the detectors
observe as it develops in the lower atmosphere. The photo-
multiplier tubes triggered by the shower define an arc on
the sky, and, together with the position of the detector,
the arc determines the so-called shower-detector plane.
When an air shower is observed in stereo, the shower tra-
jectory is in principle simply the intersection of the two
planes. This method can be further improved by also tak-
ing advantage of the timing information of the tubes, and
in our analysis the shower geometry is determined by a glo-
bal v2 minimization using both the timing and pointing
information of all tubes.

The next step in the reconstruction is to calculate the
shower development profile. However, light arriving at
the detector is collected by discrete PMTs, each of which
covers about 1� · 1� of the sky. The signal from a longitu-
dinal segment of the EAS is thus necessarily split among
many PMTs. For profile fitting, the signal must be re-com-
bined into bins that correspond to the longitudinal
segments of the EAS in HiRes 1 and HiRes 2. The re-bin-
ned signal, corrected for atmospheric extinction and with
Čerenkov light subtracted is fit to a Gaisser–Hillas func-
tional form (Eq. (1)) using a v2 that fits the function to
the profiles measured in the two detectors. This form has
been shown to be in good agreement with EAS simulations
[7–9] and with HiRes data [10]

NðX Þ ¼ Nmax

X � X 0

X max � X 0

� �ðX max�X 0Þ=k

� exp
ðX max � X Þ

k

� �
: ð1Þ

From measurements of laser tracks and stars in the field of
view of the cameras we estimate that the systematic error in
the arrival direction determination is not larger than 0.2�,
mainly caused by uncertainties in the survey of mirror
pointing directions.

Various aspects of the HiRes detector and the recon-
struction procedures are described in [11–13].

3. The likelihood

To calculate the best estimate of p and f, the mean num-
ber of protons and iron expected (at a HiRes experiment),
we maximize l(Djp, f), the likelihood of the data sample D

given p and f. To this end, Bayes’ theorem allows us to con-
vert the probability of a particular data sample D given the
composition mixture, P(Djp, f), to the probability of the
composition mixture given the data, P(p, fjD)

Pðp; f jDÞ ¼ P ðDjp; f Þqðp; f ÞP
p;f P ðDjp; f Þqðp; f Þ : ð2Þ

In this expression, q(p, f) is the prior probability of p and f.
Initially, the prior probability will contain information
about the expected distributions for protons and iron and
their respective energy spectra. However, in principle, it
can contain any number of (un)knowns concerning the ha-
dronic generator, uncertainties in atmospheric parameters,
etc. We effectively maximize P(p, fjD) by maximizing
l(Djp, f) � P(Djp, f)q(p, f).

To calculate l(Djp, f), we divide the Xmax distributions
into N bins. We let Pi and Fi be the number of events in
the ith bin of the simulated proton and iron samples,
respectively, and Di be the number of data events in the
ith bin. (The capitalized quantities are ones which we know
at the outset of the calculation.)

While we typically generate samples of simulated events
that are much larger than the data sample, the sets Pi and
Fi nevertheless represent single instances or fluctuations
around the true, unknown means ~pi and ~f i for the simu-
lated samples. Similarly, the number of data events Di in
the ith bin fluctuates around the true mean count ~di.
Assigning a Poisson probability to the counts in each bin
Di, Pi, and Fi, we can write the likelihood function as

lðDjf~dig;f~pig;f~f igÞ ¼
YN
i¼1

ð~diÞDi e�
~di

Di!

 !
ð~piÞPi e�~pi

P i!

 !
ð~f iÞF i e�

~f i

F i!

 !
:

ð3Þ
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The actual values for ~pi and ~f i will not interest us; these are
nuisance parameters which we will eventually eliminate.
However, the mean number of data counts expected in
the ith bin is expressed as a weighted sum of these
parameters:

~di ¼ �p~pi þ �f
~f i: ð4Þ

The purpose of the weights �p and �f is to (1) scale down the
(presumably larger) simulated sample sizes to the data sam-
ple size, and (2) set the relative mixture of protons and iron
expected in the data. Hence, the quantities which we want
to estimate are �p and �f. Inserting Eq. (4) into Eq. (3) and
marginalizing (integrating out) the nuisance parameters ~pi

and ~f i we define the global likelihood function l(Dj�p,�f) as

lðDj�p; �f Þ ¼
YN bins

i¼1

Z
d~pi

Z
d~f i

ð�p~pi þ �f
~f iÞDi e�ð�p~piþ�f ~f iÞ

Di!

 !

� ð~piÞP i e�~pi

P i!

 !
ð~f iÞF i e�

~f i

F i!

 !
: ð5Þ

In fact, the integration can be performed exactly (see [5] for
details), and reduces to
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Fig. 2. Iron and proton Xmax distributions generated wi
lðDj�p; �f Þ ¼
YN
i¼1

XDi

n¼0

P i þ Di � n

Di � n

� �
ð�pÞDi�n

ð1þ �pÞP iþDi�nþ1

�
F i þ n

n

� �
ð�f Þn

ð1þ �f ÞF iþnþ1
: ð6Þ

In practice, then, the function we maximize is not l(Djp, f)
directly; rather, we maximize l(Dj�p, �f) (or, more precisely,
we minimize �log l(Dj�p, �f)) with respect to both �p and �f.

With our best estimates for �p and �f, we can now esti-
mate the mean number of proton and iron events p and f
expected for the experiment. The estimates suggested in
[5] are

p ¼ �p

XN

i¼1

P i þ N

 !
ð7Þ

and

f ¼ �f

XN

i¼1

F i þ N

 !
ð8Þ

which of course reduce to the more obvious estimates
p ¼ �p

P
P i and f ¼ �f

P
F i in the usual situation when
)2 (g/cmmaxX
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th E�2 and E�3 spectra with energies above 1019 eV.
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the number of simulated events is much greater than the
number of bins in Xmax.

4. Demonstrating the method

To demonstrate the method, we create many simulated
data samples from a single parent distribution made with
ptrue proton and ftrue iron simulated events with energies
in excess of 1018.5 eV. First, we generate a library of show-
ers of various energies and primary particles with the
CORSIKA simulator using the QGSJET hadronic model.
For a given composition, these showers are selected ran-
domly according to their energy spectrum and then simu-
lated in the detector with a random geometry. We expect
the energy spectra to have an energy dependence between
E�2 and E�3. In our first application of the method, we will
pick ap = 2 and af = 3, a choice motivated by previous
composition analyses [3]. This will just serve as an example;
we will drop this assumption in the next section, where we
show how to eliminate the spectral dependence. The simu-
lated data samples are subject to the same quality cuts that
Proto
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Fig. 3. �log l(Djp, fmax) (top) and �log l(Djpmax, f) (bottom) evaluated for one
100 proton and 100 iron events. Although regions about the minima are para
we would apply to real data (see e.g. [14]). We require a
minimum track length of 3� in each detector, an estimated
angular uncertainty in both azimuth and zenith angle of
less than 2�, and a zenith angle less than 70�. We addition-
ally require an estimated energy uncertainty of less than
20% and v2/dof < 5 for both the energy and the geometry
fit, and that Xmax appear in the field of view one of the
detectors. Lastly, the reconstructed primary particle energy
must be greater than 1019 eV.

After applying the quality cuts to the parent sample, we
fluctuate each bin in the Xmax distribution in the parent data
sample many times according to Poisson statistics to obtain
many independent data samples. For the moment, we
assume that we know that ap = 2 and af = 3. If the method
works, we expect the means for pmax � ptrue and fmax � ftrue

to be 0, and the calculated uncertainties for p and f should
be meaningful; that is, the quoted values for p and f are
within 1r of ptrue and ftrue in 68% of the data samples.
Fig. 2 shows the proton and iron distributions used to
calculate the likelihood. We use the same events for gener-
ating the parent distribution and for the hypothesized
n Events
90 95 100 105

 Events

105 110 115 120

simulated data sample with 86 proton and 117 iron events fluctuated from
bolic, the distributions have substantial tails.
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distributions in the likelihood. We generate 2571, 773, 665
and 1121 events for E�2 protons, E�3 protons, E�2 iron
and E�3 iron. A similar but independent set of distributions
were combined to build the ‘fake’ data sample.

We first test the method with a mixture of 50% pro-
tons and 50% iron. Fig. 3 shows �log l(Djp, fmax) and
�log l(Djpmax, f), for one simulated data set with 86 protons
and 117 iron events fluctuated from a parent sample of 100
proton and 100 iron events; pmax (fmax) is where l(Djp, f) is
maximized with respect to p (f). From the parabolic shape
of these distributions one might suspect that the 1r uncer-
tainties for p and f can be calculated through the equations

� log lðpmax � rp; fmaxÞ ¼ � log lðpmaxÞ þ
1

2
ð9Þ

and

� log lðpmax; fmax � rf Þ ¼ � log lðfmaxÞ þ
1

2
; ð10Þ

where rp and rf are the uncertainties for p and f, respec-
tively. However, we find that l(Djpmax, f) and l(Djp, fmax)
 (maxX

500 600 700 800 9

E
ve

n
ts

0

10

20

30

40

50

60

70

 (maxX

500 600 700 800 9

E
ve

n
ts

0

10

20

30

40

50

60

70

Fig. 4. The distributions for protons and iron normalized to the number of p
proton and 117 iron events created from a parent distribution of 100 proton and
is 6.7 with 8 degrees of freedom.
have substantial tails and so their uncertainties have to
be calculated numerically.

Fig. 4 shows the corresponding distributions for protons
and iron normalized to the number of predicted events, the
total predicted mean and the simulated data set. We calcu-
late the v2 for this fit to be 6.7 with 8 degrees of freedom
while keeping in mind that the total events predicted by
the sum of p and f are not meant to predict the total num-
ber of events, but rather the expected mean number of
events.

To artificially separate the systematic and statistical
uncertainties, one can, for example, remove any prior
knowledge concerning the uncertainties in our models for
protons and iron (i.e. remove q({pi},{fi}, �pp, �ff) from
l(Dj{pi},{f}, �pp,�ff)) and define statistical uncertainty as

lstatðDjp; f Þ �
YN
i¼1

Z
dpi

Z
dfi

~dDi
i e�

~di

Di!
: ð11Þ

Then, by calculating the total uncertainty (rtot) from
l(Djp, f) and rstat from lstat(Djp, f), the systematic uncer-
tainty (rsys) can be deduced from
)2g/cm
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Added p (predicted protons) 

and f (predicted iron)

p (predicted protons)

f (predicted iron)

)2g/cm

00 1000 1100 1200 1300

Added p (predicted protons) 

and f (predicted iron)

Simulated Data Sample

redicted events, the total predicted mean, and a simulated data set of 86
100 iron events. The v2 between the parent data set and the predicted sum
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rsys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

tot � r2
stat

q
: ð12Þ

Notice we have assumed that the lstat(Djp, f) and l(Djp, f)
both have maxima at the same pmax and fmax. This is not
the case in general. However, in the instance where the
maxima do not occur at the same pmax and fmax, the differ-
ence arises from choosing what is in fact an arbitrary def-
inition of the statistical uncertainty, lstat(Djp, f).

Fig. 5 shows the distributions of pmax � ptrue and fmax �
ftrue histogrammed in blue.2 The means of these distribu-
tions do not deviate more than 1.3% for protons and iron
– an insignificant deviation considering the mean uncer-
tainties in Fig. 6. Fig. 6 shows the distribution of jpmax �
ptruej/rp and jfmax � ftruej/rf where rp and rf are the
uncertainties for p and f, respectively. As expected, 68%
of the predictions for p and f deviate less than 1r from
2 For interpretation of color in Figs. 5–9, the reader is referred to the
web version of this article.
the ptrue and ftrue. Figs. 7 and 8 shows the relative error
for protons and iron, respectively. The most probable error
for p and f is �13%.

We have tested the method with other mixtures of iron
and protons and find that it gives reasonable results for
all two-component mixtures. For instance, in Fig. 9 we find
that the method still gives reasonable uncertainties in the
case where there is an 80:20 proton:iron mixture in a 200
event parent distribution. The mode of the fractional error
is �8% (�28%) for protons (iron).

4.1. Eliminating spectral dependence in the likelihood

In practice, the energy spectra for protons and iron are
unknown. To include our lack of prior knowledge of the
energy spectrum, a slightly more sophisticated likelihood
is used.

The method allows us to float ap and af. The likelihood
can be maximized as a function of ap and af along with p

and f, but, due to limited statistics in the hypothesized
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simulated samples, we choose to marginalize these param-
eters. In principle, one would integrate over an infinite
number of spectra. However, the CPU time for such a cal-
culation is unrealistic, so here these spectra will be margin-
alized using E�2 and E�3 spectra. Eq. (2) then becomes

P ðp;f jDÞ ¼
P

ap¼�2;�3

P
af¼�2;�3P ðDjp;f ;ap;af Þqðp;f ;ap;af ÞP

p;f ;ap ;af
P ðDjp;f ;ap;af Þqðp;f ;ap;af Þ

:

ð13Þ
Other priors such as those concerning the interaction mod-
el can be introduced and marginalized in a similar manner.
Therefore, maximizing the probability P(p, fjD) is to maxi-
mize the likelihood

lðDjp; f ; ap; af Þ � P ðDjp; f ; ap; af Þqðp; f ; ap; af Þ
¼ lðDjfpig; ffig; �p; �f Þ ð14Þ
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We can see that the introduction of priors does not change
the distributions in Figs. 5 and 6 substantially as seen by
comparing the blue and green histograms. Its effect can
be best seen by the upward shift in the mean relative uncer-
tainty (between the blue and green histograms) in Figs. 7
and 8.

We conclude that the method gives an accurate predic-
tion of the mean number of protons and iron. For instance,
with 100 proton and 100 iron events in a data sample
with primary energies over 1019 eV, the uncertainty in p

and f is �12% with a better chance of obtaining a larger
pσ|/true-px

3 4 5 6

 = 3 assumedfα = 2, p

 marginalizedfα,p

s included but not considered in l(p,f)
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fσ|/true-f
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n uncertainties, rp and rf, respectively. The green (blue) histograms were
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. (15) to account for gammas. The histograms have overflow events (e.g.,

interpretation of the references in colour in this figure legend, the reader is
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uncertainty. This increase is expected as we have intro-
duced some ‘‘ignorance’’ in the choice of spectra. Further,
the likelihood is able to accurately predict the 1r
uncertainties.

In the instance where we wish to sum over spectra, we
would ideally integrate over every possible spectrum for
protons and iron. Computationally, this is obviously
impossible. Instead, we compromise by summing over
‘‘extremes’’ of what we would expect for protons and iron.
In this first approximation, we calculate L(Dj�p, �f,ap =
2,af = 2), L(Dj�p, �f,ap = 2,af = 3), L(Dj�p, �f,ap = 3,af = 2)
and L(Dj�p, �f,ap = 3,af = 3). That is, we calculate the
likelihood with every combination of spectra for the
proton and iron distributions. Then, we sum these four
likelihood and maximize the sum with respect to �p and
�f. Had we summed over generators (say QGSJET and SIB-
YLL), we would sum over eight likelihoods where each
likelihood is calculated with a different combination of
spectra and hadronic generators. The calculation of uncer-
tainties are made in the usual way with the summed
likelihood.
p Relative Error
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
o

rm
al

iz
ed

 t
o

 1

0

0.1

0.2

0.3

0.4

0.5

0.6

s included but notγ
considered in l(p,f)

p Relative Error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
o

rm
al

iz
ed

 t
o

 1

0

0.1

0.2

0.3

0.4

0.5

0.6

 marginalizedfα,pα

Fig. 7. Fractional uncertainty for the mean number of protons (p). The gre
histogram makes use of Eq. (15) that is applied to a parent data sample made o
includes an additional term in Eq. (15) to account for gammas. The histograms
figure legend, the reader is referred to the web version of this article.)
5. Discussion

We now investigate the case where the sample made of
proton and iron is ‘‘contaminated’’ with other components.
We start the discussion with gamma primaries. AGASA
has estimated the upper limit in the c-ray flux to be 28%
for events above 1019 eV [15]. We therefore create a 250
events sample with 100 protons, 100 iron, 50 gammas.
The hypothesized distributions for gammas are based on
1352 and 490 gammas with E�2 and E�3, respectively.
We use the gammas with an E�3 spectrum to generate
the parent distribution. The result of the contamination is
a large bias in p and f found in the black histogram in
Fig. 5 and wrong uncertainties as seen in Figs. 6–8. How-
ever, if the likelihood is modified to
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en (blue) histograms were calculated with Eqs. (15) and (5). The black
f 250 events with 100 proton, 100 iron and 50 gammas. The red histogram
have overflow events. (For interpretation of the references in colour in this
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Fig. 8. Fractional uncertainty for the mean number of iron (f). The green (blue) histograms were calculated with Eqs. (15) and (5). The black histogram
makes use of Eq. (15) that is applied to a parent data sample made of 250 events with 100 proton, 100 iron and 50 gammas. The red histogram includes an
additional term in Eq. (15) to account for gammas. The histograms have overflow events. (For interpretation of the references in colour in this figure
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where �g, Gi, etc., carry the same definitions for gammas as
�pp, Pi, etc., carry for protons, we see that the uncertainties
once again make sense and the bias becomes negligible as
shown by the red histograms is Figs. 5 and 6. In Figs. 7
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and 8 we see an increase in the relative uncertainties for
iron while the proton uncertainties do not change signifi-
cantly. An increase in the uncertainties would not be sur-
prising as there is an overlap in the Xmax distributions
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between protons, iron and gammas. The lack of significant
change is a result of the right combination of protons with
an E�2 spectrum and iron with an E�2 spectrum having a
much larger likelihood value than the alternatives in the
summation of ap and af. This demonstration shows that
one must account for gamma-like primaries if there is a
reasonable expectation that they may be in the data.

Accounting for all possible contributions from every
imaginable primary is clearly impossible. A number of
questions then arise. For instance, is it sufficient to assume
a proton and iron mixture when analyzing a real data dis-
tribution? Is it necessary to assume, for instance, a proton,
helium, carbon and iron mixture? Would such complex
mixtures be more or less useful than simply quoting the
result assuming a proton and iron mixture?

These questions can be approached in two ways. If we
had good reason to believe ultrahigh energy cosmic rays
were composed exclusively of (say) protons, carbon and
iron, then we would consider it useful to measure the rela-
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Fig. 10. Distribution of the relative errors for proton, carbon and iron hypot
parent sample of 100 proton, 50 carbon and 100 iron events.
tive contributions from these three elements regardless of
their uncertainties.

On the other hand, if we consider protons, carbon and
iron as stand-ins for ‘‘light’’, ‘‘medium’’ sized and ‘‘heavy’’
primaries, then we can ask how sensitive the likelihood
method is to these elements. That is, if there were some-
thing resembling carbon mixed with protons and iron,
could it be detected to any accuracy?

In the latter vein, we build a ‘‘fake’’ data sample with
100 proton, 50 carbon and 100 iron primaries. We then
apply the full likelihood in Eq. (16), replacing the gamma
term with carbon, and evaluate the distribution of uncer-
tainties (Fig. 10). Although we find the uncertainties are
meaningful, the large uncertainties for carbon indicate that
the resolution is not sufficient to make statements about the
fraction of medium-sized primaries in this type of data
sample by inserting the carbon hypothesis. From this per-
spective, it is less important to account for carbon prima-
ries than gamma primaries.
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We also study the case where two hypothesized elements
are indistinguishable. We create a fake data set of 250
events with 150 proton and 100 iron events. A proton dis-
tribution, a second identical proton distribution and an
iron distribution act as hypotheses. That is, the likelihood
is calculated using Eq. (16) substituting a second proton
distribution for the gamma distribution. The algorithm
that maximizes the likelihood, unable to distinguish how
many of the 150 proton are attributable to the first proton
distribution as opposed to the second, settles on an arbi-
trary number of proton events between 0 and �150 for
the first proton hypothesis (p1). What remains of �150
events is attributed to the second proton hypothesis (p2).
The uncertainties are then calculated for p1 and p2 by fixing
the number of events for p1 (p2) fluctuating p2 (p1) ± 1r
according to Eq. (9). As there are large correlations
between p1 and p2 that are not considered when calculating
the uncertainties in this way, the method underestimates
the uncertainties (1r corresponds to 15% confidence
region). Therefore, before an element is inserted as a
hypothesis, the correlations between the various distribu-
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Fig. 11. Histograms of p � ptrue (top) and f � ftrue (bottom) for ptrue = 100 an
likelihood calculation uses proton and iron events generated with QGSJET.
tions need to be understood or one needs to verify that
the distributions are sufficiently uncorrelated such that
the results have meaningful uncertainties.

Also, one may consider other hadronic models. In prin-
ciple, the hadronic models can be marginalized by simply
‘‘summing’’ over them. Xmax distributions for protons, iron
and gammas with E�2 and E�3 spectra would be generated
using QGSJET and SIBYLL hadronic models. The com-
plexity of the likelihood and the amount of Monte Carlo
increases sharply with the number of priors. For the sake
of time and simplicity the full calculation is not made here.
However, to show that it is important to consider different
hadronic models, we generate a simulated data set with 100
proton and 100 iron events with the SIBYLL hadronic
model. We then fluctuate this distribution many times in
the same fashion described above each time calculating
the maximum likelihood using proton and iron events gen-
erated with QGSJET. Fig. 11 shows the �60% shift in the
mean number of protons and iron resulting from calculat-
ing the likelihood using QGSJET. Regardless, this shift
shows that the composition fractions cannot be properly
true- p
0 20 40 60 80 100

true- f
0 20 40 60 80 100

d ftrue = 100 where the simulated data is generated with SIBYLL and the
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calculated without considering at least the QGSJET and
SIBYLL hadronic models.

We have discussed widening the measurement to include
such knowledge and given an example of how one might
introduce prior knowledge by introducing and then mar-
ginalizing the unknown spectral dependence of iron and
protons. Other parameters concerning the extensive air
shower and atmospheric uncertainties can be introduced
and marginalized provided sufficient data and CPU time.
In so doing, uncertainties are rigorously compounded in
the calculation.

Further, we have investigated the consequence of
contaminating the simulated data with gammas and car-
bon. Proton, iron and gamma hypotheses are sufficient if
one is only interested in stand-ins for ‘‘heavy’’, ‘‘light’’,
and ‘‘lighter’’ elements. However, it is important to con-
sider all elements that one reasonably expects to be in the
data.

This method of measuring the composition is different
from the method using elongation rate. It uses the full dis-
tribution of Xmax to determine the composition as opposed
to the elongation rate which uses the mean. Also, the mea-
sured elongation is independent of any model assumptions
although its interpretation requires one to compare the
measurement to what is expected for various compositions.
The method is currently being applied to HiRes stereo
events and results will be presented in a separate paper
where the composition will be evaluated for events in inter-
vals of 1018.5 eV, 1019.0 eV, 1019.5 eV, etc.
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