
32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011

Fluorescence detector simulation on GPUs

TAREQ ABUZAYYAD 1 FOR THE TELESCOPE ARRAY COLLABORATION
1University of Utah, Salt Lake City, UT, 84112
tareq@cosmic.utah.edu

Abstract: In recent years, the graphics processor unit (GPU) has been recognized and widely used as an accelerator
for many scientific calculations. In general, problems amenable to parallelization are ones that benefit most from the use
of GPUs. The Monte Carlo simulation of fluorescence detector responseto air showers presents many opportunities for
parallelization. In this paper I will present a fluorescence detector simulation program which runs on the GPU. All of
the physics simulation from shower development, light production and atmospheric attenuation, as well as, the realistic
detector optics and electronics simulations are done on the GPU. I will describe the implementation of the code and
present results on the performance of the simulation. Improvements in computational throughput in excess in excess of
50× are reported and the accuracy of the results is on par with the CPU implementation of the simulation.

Keywords: UHECR, fluorescence, detector simulation, GPU, CUDA.

1 Introduction

Fluorescence detectors (FD) are ultra high energy cosmic
rays (UHECR) detectors. Cosmic rays interact near the
top of the atmosphere and generate an extensive air shower
(EAS). Charged particles in the EAS ionize the Nitrogen
molecules in the air and cause them to emit flourescence
light. FD’s are built using light collectors (mirrors), pho-
tomultiplier tubes (PMTs) for camera pixel elements, and
high speed electronics that allows them to form an image of
the EAS development through the atmosphere. Cerenkov
light is also produced by the shower particles, and con-
tributes to the detected signal. The detector response to
an observed shower is refered to as an ”event”.

Fluorescence detectors (FD) rely on Monte Carlo (MC)
simulations to calculate the detector aperture, and check the
validity and accuracy of event selection and reconstruction
procedures. In addition the event reconstruction itself typi-
cally employs an inverse Monte Carlo fitting method. The
detector MC simulates (a) the shower development in the
atmosphere, (b) the flourescence and Cerenkov light pro-
duction, (c) the propagation of the light from the shower to
the light collector (taking into account atmospheric losses
and the collection efficiency of the detector), and (d) the
response of the detector electronics to the PMT’s signals.

Calculating the detector response for a single shower is rea-
sonably fast, on the order of a few seconds. However there
is a need to generate a large number of showers in order
to understand the detector and the data. The event recon-
struction procedure using the inverce MC method is more
time consuming than event simulation since the response

to many trial showers has to be evaluated. It could take up
to a few weeks to generate and reconstruct enough MC to
produce a physics result. Therefore accelerating the data
processing is a highly desirable and useful development.

General Programing on Graphics Processor Units
(GPGPU) has been a topic of research for a decade now
but has really gained momentum in the scientific comput-
ing field over the past four years, after the introduction
of CUDA [1] (C for Unified Device Architecture) by
Nvidia. The creation of a “high” level interface to the
GPU hardware made programming the GPU accessible
to a large number of non-experts (author included). The
main drawback to using CUDA is that not all computers
are equipped with GPUs from Nvidia. For this reason, the
program described in this paper was written in such a way
that it would run with or without GPU acceleration.

GPGPU is most useful when dealing with computational
problems that can easily by parallelized. The simulation of
the FD response to one shower involves performing a large
number of independent calculations that can be executed in
parallel, making it ideal for GPU acceleration. In addition,
each event is simulated independently of other events (triv-
ial parallelism), again ideal for GPUs. The simultanuous
calculation of the detector response to multiple events im-
proves the efficiency and utilization of the GPU resources.

Section 2 below gives an overview of the MC program flow,
along with the steps required to simulate one event. Sec-
tion 3 describes the basic concepts of the CUDA program-
ming model as it relates to the problem at hand. Section
4 discusses introduces the MC program design considera-
tions and implementation details. And in the final section

ABUZAYYAD et al. FD SIMULATION ON GPUS

we present results of some sample simulations and discuss
performance.

2 FD Simulation Procedure

The FD MC program is invoked to simulate aset of shower
events. The first step of the simulation is to initialize the
detector configuration and set the relevant physics mod-
els based on user input. Once initialization is done, the
requested set of events is generated either serially (CPU)
or in parallel (GPU). Finally, the generated parameters for
all simulated showers, along with the detector response for
those showers which trigger the detector, are written to an
output file.

The following bullets outline the flow of the MC program:

• Parse user input; set detector configuration, atmo-
spheric parameters and physics models.

– If using GPU: copy initialization data to GPU;
Initialize RNG on GPU

• Start data set simulation: Either randomly generate
shower profile/track geometry for all showers in the
set, or read in the shower profile/track geometry from
an input file. The latter option is used in hybrid sim-
ulations were the same set of showers already used
in a surface detector simulation is passed to the FD
simulation.

• Reduce the data set by checking on whether the gen-
erated shower track is in the field of view (FOV) of
any FD telescope. If not, the event is discarded as
no trigger can be expected. In addition, if this is a
hybrid event, then check the event time stamp to see
if it occurs at a time when the FD is running (recall
FD’s have a 10% duty cycle)

• If running on the CPU then process each shower
event sequentially, otherwise copy the reduced set to
the GPU memory and run the shower simulation in
parallel.

• If using the GPU then copy the detector response
back to main memory

• Write out simulation results.

In the FD MC, an extenisve air shower is defined by eight
parameters: Four parameters define the shower track. An-
other four parameters define the shower energy and devel-
opment profile, following the Gaisser-Hillas (GH) param-
eterization. These eight variables form the input to an in-
dividual shower simulation. The simulation proceeds as
follows:

• Subdivide the shower-track into smaller track seg-
ments: The shower track is a line segment which
extends from the CR first interaction point to the

ground along the shower path. This track is divided
into 832 track segments of equal atmospheric depth
steps, 1-2 g/cm2 each depending on shower zenith
angle.

• Generate Shower Profile: Given the GH profile para-
maters, evaluate the shower size (number of shower
electrons) and related variables at the center of each
segment.

• Calculate fluorescence and Cerenkov light produc-
tion: This involves calculating the shower energy
deposit, and the flourescense yield. Note also, that
Cerenkov light refers both to local production at each
track segment and the accumulated Cerenkov beam
as the shower develops. The latter is calculated in a
separate step in order to make best use of the GPU.

• Light propagation and collection: With a track seg-
ment acting as a point source calculate the wave-
length dependent atmospheric attenuation along the
path to the observing telescope. Also account for ge-
metrical, and wavelength dependent, collection effi-
ciency of the detector elements.

• Prepare electronics simulation: Evaluate the time du-
ration for which the electronics simulation needs to
be done and add the sky noise background photons
contribution to the PMT signals in this time interval.

• Perform ray tracing: Ray trace photons from the
track segment through the telescope optics and into
a determine if a PMT is hit.

• Electronics simulation: The PMT signal is filtered
and amplified. Also, check for a “tube trigger”
which occurs when the signal voltage crosses a cer-
tain threshold.

• Trigger logic: Check the numbers and pattern of trig-
gered tubes to see if the conditions for a “mirror trig-
ger” are satisfied. If one or more mirrors trigger that
defines a detector trigger.

3 CUDA Programming model

The reader is refered to [2] for a full introduction to CUDA.
Here, I will introduce a few key conepts that are relavent to
this paper.

A computer program written with CUDA executes on the
CPU, the host, and treats the GPU,the device, as a co-
processor. The program flow is controlled by code that
runs on the CPU. The GPU is invoked from the host by
calls to special functions,kernels, identified in the source
code by a keyword__global__. Kernels can calldevice
functions, identified by the keyword__device__. These
keywords (function qualifiers) are introduced as extensions
to the C programing language and are interpreted by the
CUDA compiler (nvcc). A function can be defined to be

32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011

executed on the CPUand on the GPU by giving it a name
qualifier__host__ __device__.

The CUDA parallel execution model is refered to as single-
instruction multiple-thread (SIMT). A group of 32 threads,
collectively referred to as awarp, execute a single instruc-
tion, each thread on its own private data. Best performance
is obtained when all threads in a warp execute the same
instruction. CUDA defines a thread hierarchy as follows:

• Threads are organized inthread blocks. The thread
identifier is a 3 component vector allowing for 1D,
2D, or 3D blocks with upto 1024 threads.

• A collection of blocks, up to 65k, make up agrid

The user specifies the total number of thread-blocks to run,
and the size and dimensionality of each block. A kernel
launch is requested for a grid of thread blocks. The man-
agement of all the threads: scheduling, resource allocation,
etc. is handled by the hardware.

4 Program design considerations

One of the main design considerations was that the pro-
gram would run on any computer, with or without a GPU.
The build system, based on CMake, compiles the program
to run on the CPU by default. However, it can be invoked
with an optionWITH_CUDA=ON in which case the pro-
gram is built with GPU acceleration. Where appropriate
a preprocessor variable is defined to select the CPU (host)
path or the GPU (device) path.

To simplify code maintinance in the long term and to mini-
mize the chance for the CPU and GPU code to be modified
separately and inconsistently, most calculations are per-
formed inside functions defined to run on both the CPU and
the GPU. This is accomplished by using the CUDA con-
structs__host__ __device__ and making sure that
the functions can be compiled on the more restrictive envi-
ronment of a GPU (e.g. GPU code can not use C++ STL
classes). If the program is built on a computer that does not
support CUDA, care was taken so that the above keywords
are replaced by white-spaces and the source code then
looks like standard C++ code. The MC also has support
for the CERN ROOT framework [3]. Many classes in the
code library can be loaded into a ROOT session for interac-
tive calculations. A small complication arose when adding
ROOT support, in that the rootcint preprocessor would not
ignore the key words__host__ __device__ (unde-
fined outside of CUDA). It did however accept (and ig-
nore) the symbol__HOST_DEVICE__, and this symbol
was used as a workaround.

Another consideration is that while some GPUs support
half-speed double precision calculations (as compared to
single precision), many consumer grade video cards only
support1/8 or 1/12 double precision speeds. On the CPU
we always use double precision. To get the same function
to run in double precision on CPU and single precision on

GPU, C++ templates are used throughout the program. The
accuracy of the single precision calculation was verified by
comparing the results from the GPU to double precision
calculations done on the CPU. The following code sample
illustrates the basic structure of the source files and classes.

#ifdef __CUDACC__
define __HOST_DEVICE__ __host__ __device__
#else
define __HOST_DEVICE__
include <iostream>
#endif

namespace utafd {

// Vector3 class definition _____________________

template <typename real_t>
class Vector3 {
public:
__HOST_DEVICE__
Vector3() : x_(0), y_(0), z_(0) {}

//...
__HOST_DEVICE__
inline real_t dot(const Vector3& v2) const;
//...

protected:
real_t x_, y_, z_;

};

// Vector3 class Implementation _________________

//...
template <typename real_t>
__HOST_DEVICE__
real_t Vector3<real_t>::dot(const Vector3& v2) const
{

return x_*v2.x_ + y_*v2.y_ + z_*v2.z_;
}
//...

}

The preprocessor section starting in#ifdef makes it pos-
sible to compile the source code on a machine without
CUDA. The template paramater realt is replaced by either
float or double depending on where the code is executed.

Random number generation is done differently on the CPU
and the GPU. On the CPU we use a routine from Numeri-
cal Recipes [4] to generate a single sequence of psudoran-
dom numbers. On the GPU side, each thread gets it’s own
sequence using a MWC generator [5]. The actual imple-
mentaion used was developed by the authors of a program
described in [6].
Wrapper functions are used to hide the different RNG im-
plementations, so for example the function:

namespace utafd {
template <typename real_t>
__HOST_DEVICE__ inline
real_t random_uniform(unsigned long long* rng_x=0,

unsigned int* rng_a=0)
{

#if !defined(__CUDA_ARCH__) // host (cpu) path
double r;
rangen_(r); // numerical recepies ran2()
return (real_t) r;

#else // device (gpu) path
return rand_MWC_co(rng_x, rng_a);

#endif
}

}

ABUZAYYAD et al. FD SIMULATION ON GPUS

Kernel tpb nb
generate track segments 32 NE/tpb
shower profile 64 NE ×NS/tpb
shower photons (step 1) 32× 32 NE ×NS/tpb.x
shower photons (step 2) 32 NE
mirror photo-electrons 64 NME ×NS/tpb
prep electronics 32 NME/tpb
init electronics 256 MLM
ray tracing 64 MLM × 4

electronics 256 MLM

Table 1: Kernel configuration: tpb = threads per block, nb =
number of blocks per launch, NE = total number of shower
events, NS = number of track segments, NME = total num-
ber of mirror-events, MLM = maximum number of mirrors
per launch.

can be called from a host function, omitting the parame-
ters x, and a. On the device, these parameters specify the
sequence unique to the calling thread. The preprocessor
variable__CUDA_ARCH__ is used to select the section of
the code to be included in the function when compiled for
the CPU or GPU.

The kernel launch configuration is modified for each part of
the calculation in order to achieve best performance. The
implementation for the TA MD site simulation is summa-
rized in table 1. Due to the limited amount of memory on
the GPU card, 1 GB in our case, the maximum number
of shower events simulated at one time is limited to 768
events. The electronics simulation requires 8MB per mir-
ror and is therefore limited to 32 mirrors at a time with
multiple launches for the whole set.

5 Results and Performance

Accuracy of floats vs doubles: during development test
runs were made were the same simulation was run on the
CPU in double precision and on the GPU in single preci-
sion. Intermediate results from each stage of the simulation
was saved and compared for accuracy. Where differences
were found they were on the order of 0.01%.

Execution speed comparison: A test simulation of the TA
Middle Drum detector was done to measure the relative
performance of the program. A simulation of a set of 1500
events,1019eV showers, was run on both the CPU (Intel
Q8300, 2.50GHz) and GPU (Nvidia GTX 460, 763MHz).
The total run times were 6min 16s (CPU) and 6.1 sec
(GPU), for an overall speedup of about 60×. The output
of the simulations is not identical since the RNG’s used are
different, however the results were consistency. As an ex-
ample, the total number of triggered events: 310 vs. 308
with about 300 triggered events being the same shower
events.

6 Acknowledgements

The Telescope Array experiment is supported by the Japan
Society for the Promotion of Science through Grants-
in-Aid for Scientific Research on Specially Promoted
Research (21000002) “Extreme Phenomena in the Uni-
verse Explored by Highest Energy Cosmic Rays”, and
the Inter-University Research Program of the Institute
for Cosmic Ray Research; by the U.S. National Science
Foundation awards PHY-0307098, PHY-0601915, PHY-
0703893, PHY-0758342, and PHY-0848320 (Utah) and
PHY-0649681 (Rutgers); by the National Research Foun-
dation of Korea (2006-0050031, 2007-0056005, 2007-
0093860, 2010-0011378, 2010-0028071, R32-10130); by
the Russian Academy of Sciences, RFBR grants 10-
02-01406a and 11-02-01528a (INR), IISN project No.
4.4509.10 and Belgian Science Policy under IUAP VI/11
(ULB). The foundations of Dr. Ezekiel R. and Edna Wat-
tis Dumke, Willard L. Eccles and the George S. and Do-
lores Dore Eccles all helped with generous donations. The
State of Utah supported the project through its Economic
Development Board, and the University of Utah through
the Office of the Vice President for Research. The exper-
imental site became available through the cooperation of
the Utah School and Institutional Trust Lands Administra-
tion (SITLA), U.S. Bureau of Land Management and the
U.S. Air Force. We also wish to thank the people and the
officials of Millard County, Utah, for their steadfast and
warm support. We gratefully acknowledge the contribu-
tions from the technical staffs of our home institutions and
the University of Utah Center for High Performance Com-
puting (CHPC).

References

[1] http://www.nvidia.com/object/cuda_
home_new.html

[2] http://developer.download.nvidia.
com/compute/DevZone/docs/html/C/doc/
CUDA_C_Programming_Guide.pdf

[3] http://root.cern.ch
[4] William H. Press, et al.: 1992. Numerical Recipes

in FORTRAN (2nd Ed.). Cambridge University Press,
New York, NY, USA.

[5] Marsaglia G., Random number generators, J. Mod.
Appl. Stat. Meth. 2003,2, 213

[6] http://code.google.com/p/gpumcml/

