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Abstract

Although the existence of cosmic rays with energies extending well above 1019 eV has been confirmed, their origin

remains one of the most important questions in astro-particle physics today. Several source models have been proposed

for the observed set of ultra high energy cosmic rays (UHECRs). Yet none of these models have been conclusively

identified as corresponding with all of the available data. One possible way of achieving a global test of anisotropy is

through the measurement of the information dimension, DI, of the arrival directions of a sample of events. DI is a

measure of the intrinsic heterogeneity of a data sample. We will show how this method can be used to take into account

the extreme asymmetric angular resolution and the highly irregular aperture of a monocular air-fluorescence detector.

We will then use a simulated, isotropic event sample to show how this method can be used to place upper limits on any

number of source models with no statistical penalty.
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1. Introduction

The observation of ultra high energy cosmic

rays (UHECRs) has now spanned nearly three

decades. Over that period, many different source
models have been proposed to explain the origin of

these remarkable events. Recently, the akeno giant

air shower array (AGASA) reported clustering at

small angular scales for the events that were ob-

served above 4 · 1019 eV [1]. However, this result
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could not be confirmed by the high resolution Fly�s
Eye (HiRes) air fluorescence detector [2] despite

the fact that Hires-I�s monocular exposure was
more than twice that of AGASA within the per-

tinent energy range [3]. AGASA has also reported
a possible excess of events in the direction of the

galactic center for events with energies around 1018

eV [4]. However, HiRes reported that it did not see

anisotropies when examining harmonics in right

ascension, a priori determined point sources, or

enhancement in the supergalactic plane. Further-

more, prior analysis by original Fly�s Eye showed
no evidence of anisotropies when dependencies
in galactic latitude and longitude, harmonics in
ed.
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right ascension, excess maps, and specific a priori

determined point sources were examined [5,6].

However, Fly�s Eye did find a small apparent ex-
cess in the direction of the galactic plane. [7]. In

1995, it was reported by Stanev et al. that the

combined data of Haverah Park, Yakutsk, and
AGASA showed an excess along the supergalactic

plane with several potential point sources for

events above 2 · 1019 eV [8].
These conflicting reports call for developing a

more global way in which one could determine if a

given sample possesses any statistically significant

anisotropy. We will show that by considering the

information dimension, DI, of a given sample, one
can simultaneously look for anisotropies at all

angular scales greater than the angular resolution

of the sample by considering the intrinsic hetero-

geneity of that particular data sample. This method

is quite robust in that it can easily accommodate

both asymmetric angular resolutions and irregular

apertures. Furthermore, in the event that a sample

is shown to be consistent with an isotropic distri-
bution, this method can be used to place upper

limits on possible source models. Because only a

single measurement is taken of the actual data, any

number of source models can be considered simul-

taneously without incurring statistical penalties.
2. Calculating fractal dimensions of a data sample

Fractal dimensionality is a simple measure of

the scaling symmetry of a structure. By measuring

the fractal dimension of a data sample, one can

examine its self-consistency at different levels of

magnification. There are several ways of exploiting

this idea. From a computational perspective, the

simplest is to use box-counting. For the most
general case, the capacity dimension, Dc [9], one

partitions the sample space into equi-sized and

equi-shaped ‘‘boxes’’ with edge size �:

Dc ¼ lim
�!0þ

logNð�Þ
log 1=�

: ð1Þ

Here, Nð�Þ is the minimum number of ‘‘boxes’’

with edge size � necessary to cover one�s sample.
The capacity dimension has a serious limitation:

It only looks for the presence of the sample within
the available space and does not consider varia-

tions in the density of the sample at a given point

in space. In cases where the density may differ

within the sample space, the appropriate alterna-

tive is to use the information dimension, DI [10,11]:

DI ¼ �
XN
i¼1

lim
�!0þ

Pið�Þ log Pið�Þ
log 1=�

; ð2Þ

where Pið�Þ is the probability of finding a data
point in the ith box of edge size �. This is a par-
ticularly suitable measurement when considering a

data set consisting of UHECR arrival directions

with finite angular resolution.

It should be noted that Dc and DI are both
particular cases of the q-dimension [12,13],

Dq ¼
1

1� q
lim
�!0þ

log Iðq; �Þ
log 1=�

; ð3Þ

where

Iðq; �Þ ¼
XN
i¼1

Pið�Þq: ð4Þ

We can then see that Dc ¼ limq!0 Dq and that

DI ¼ limq!1 Dq.
3. Application to arrival direction distributions for

UHECRs

In principle, it is simple to calculate the infor-

mation dimension for a given sample of events.

However, two complications arise when consider-
ing a set of arrival directions of UHECRs. First,

the event directions are not known with complete

precision. This makes the determination of DI as

� ! 0 meaningless. Secondly, the determination of

DI requires that the sample space be divided into

equi-sized and equi-shaped bins. For a spherical

surface, this is simply not possible. Nevertheless,

there are workable solutions for both of these
problems.

3.1. Angular resolution

We will consider a hypothetical monocular air-

fluorescence detector. This detector is largely

based upon the characteristics of the Hires-I
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detector [14,15]. Our detector observes events with

an angular resolution that is described by a highly

asymmetric 2-d Gaussian. For a monocular air

fluorescence detector, angular resolution consists

of two components: r1, in the determination of the
angle, w, within the plane of reconstruction, and
r2, in the estimation of the plane of reconstruction
itself. Fig. 1 illustrates how this geometry would

appear with a particular plane of reconstruction

and a particular value for w. Intuitively, we can see
that we should be able to determine the plane

of reconstruction quite accurately. However, the

value of w is more difficult to determine because it
is dependent on the precise results of the monoc-
ular reconstruction [14,15].

The actual parameterizations of r1 and r2 as-
sumed are as follows:

r1 ¼ 20�e�1:5 log10 EEeV þ 4� ð5Þ
and

r2 ¼ 100�e�0:5Dv þ 0:4�: ð6Þ
Here, EEeV is the primary energy of the shower in
EeV. For the purpose of this study, the energy will
Fig. 1. The geometry of reconstruction for a monocular air

fluorescence detector.
be allowed to vary between 1018:5 and 1020 eV with

a differential spectral index of )2.7. In this sce-
nario, a shower with a primary energy of 1018:5 eV

will have r1 ¼ 13:4�, while a shower with a pri-
mary energy of 1020 eV will have r1 ¼ 5:0�. This
difference can be attributed to the fact that larger

showers have better defined profiles and a better

signal-to-noise ratio.

The factor, Dv, in Eq. (6) is the angular track
length (in degrees) of the shower as observed by

the detector, which is allowed to vary between 8�
and 30�. A shower with an observed track length

of 8� will have r2 ¼ 2:2�, while a shower with an
observed track length of 30� will have r2 ¼ 0:4�; a
longer track-length leads to a more accurate

determination of the plane of reconstruction. The

distribution of r2 values is largely independent of
energy because while higher energy showers do

lead to more longitudinal development, they are

also brighter, which allows one to observe them at

greater distances. These competing factors lead to
Dv distributions that are virtually identical across
the observed spectrum.

In general, it should be noted the distributions

of r1 and r2 values are relatively insensitive to the
differential spectral index that is chosen. We

ascertained this by considering two sets, one with a

differential spectral index of )2.5 and one with a
differential spectral index of )3.5. Even for a var-
iation that was much larger than the accepted

range of experimental values for the the UHECR

spectrum [14–17], the value of �r1 increased by only
11%. The value of �r2 remained unchanged. This
can be explained by realizing for a steeply falling

spectrum, the overwhelming majority of observed

events in either case will occur in the first half

decade of the measurement. This is a very small
effect compared to the expected statistical fluctu-

ations that would occur between two consecutive

sets of observations.

For the purpose of calculating DI, we can treat

the arrival direction of each individual shower as a

two dimensional elliptical Gaussian distribution

with the parameters r1, r2. The size of a bin�s edge,
�, will be allowed to take on a series of values, Dh,
which will be in an interval corresponding to a

scale length of the sample or in the case of a

smooth distribution, the smallest value that is
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computationally feasible. For finite events sam-

ples, we will use Dh ’ 0:5�. In the case of smooth
distributions we will use a computationally limited

value of Dh ¼ 1=6�. The number of points in each
shower direction distribution, NDist, will be deter-
mined by the mean value, hnii, necessary to assure
that the fractional Gaussian fluctuations of the

count, ni in each bin, do not on average, exceed a
predetermined value (i.e. for 5% fluctuations,

NDist ’ 500). For each value of �, the probability,
Pið�Þ, for the ith bin will be:

Pið�Þ ¼
ni

NDist 
 NShower
: ð7Þ

We calculate DI for each value of �:

DIð�Þ ¼ �
XN
i¼1

Pið�Þ log Pið�Þ
log 1=�

: ð8Þ

We then determine DI to be hDIð�Þi over the
specified interval of � values.

3.2. Latitudinal binning

For the purpose of calculating DI, it is necessary

that all bins be equi-sized and equi-shaped as we

vary the size of the side of the bins, �. While it is
impossible to achieve completely this criterion on

the surface of a sphere, we will be able to do so

approximately by adopting a latitudinal binning
scheme.
Fig. 2. Hammer–Aitoff projection of latitudinal bins for four different
Latitudinal binning is achieved by first dividing

the sky into Nd declinational ðdÞ bands where each
band has a width

Dh ¼ p
Nd

: ð9Þ

For each declinational band, the sky is then di-

vided into Na;d bins in right ascension ðaÞ where:

Na;d ¼
2p

R d2
d1 cos ddd

ðDhÞ2

" #

¼
2ðNdÞ2

R d2
d1 cos ddd

p

" #
: ð10Þ

The solid angle, DXd of each bin (in steradians) is:

DXd ¼
2p

R d2
d1 cos ddd

Na;d
ð11Þ

with a minimum value of ðDhÞ2 (at the equator)
and a maximum value of p

3
ðDhÞ2 (at the poles)

regardless of the value of Nd. This provides us with

bins that are all almost the same area and nearly
square-shaped (with the exception of three trian-

gular bins at each pole). The total number of bins

in the sky can be approximated by:

Nsky ’ 4p
Nd

p

� �2

¼ 4

p
N 2

d : ð12Þ

In Fig. 2, we visualize the latitudinal binning
technique for a series of different Nd values.
values of Nd––(a) Nd ¼ 5; (b) Nd ¼ 12; (c) Nd ¼ 30; (d) Nd ¼ 90.
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3.3. Application to the calculation of DI

We can now apply the preceding machinery to

the calculation of DI: First, we need to normalize

the event count in each bin by its respective bin
area, DXd

Pið�Þ ¼
niðDhÞ2

NDistNShowerDXd

¼ nip2

NDistNShowerðNdÞ2DXd

: ð13Þ

If we then realize that � ¼ 1
Nd
, we can obtain:

DIðNdÞ ¼ � 1

logNd

XN
i¼1

PiðNdÞ log PiðNdÞ: ð14Þ

This expression is reminiscent of the general for-

mula for entropy from statistical mechanics:

S ¼ �k
X
r

pr log pr; ð15Þ

where pr is the probability of a particle being the
rth state and k is the Boltzmann constant, which
can be thought of as a scaling constant based upon

the intrinsic scale of the given particle. The infor-

mation dimension, DI, is an analogous measure-

ment of the heterogeneity of a given data set.
Table 1

Coordinates used for the centers of seven discrete sources

Cluster Right ascension Declination

C1 01h13m 20.6�
C2 11h17m 56.9�
C3 18h51m 48.2�
C4 04h38m 30.0�
C5 16h02m 23.3�
C6 14h11m 37.4�
C7 03h03m 55.5�

These coordinates correspond to the centers of the seven clus-

ters reported by the AGASA Collaboration [1].
4. Calculating DI for exposures of different source

models

4.1. Exposure-independent source descriptions

We began by examining four different source
models independently of detector exposure. This

allows us to calculate the value of the informa-

tion dimension, DI, without consideration to the

detector aperture or statistical fluctuations from a

finite event sample. The source models are: an

isotropic source model, a dipole source model, a

model with seven sources superimposed on an

isotropic background, and a dark matter halo
source model.

4.1.1. Isotropic model

The first model that we will consider is an iso-

tropic source model with distribution:

nisotropic ¼ 1: ð16Þ
4.1.2. Dipole model

The second is the Centaurus A dipole source

model first proposed by Farrar and Piran [18]. This

model has a distribution of arrival directions char-

acterized by a scaling parameter, a, which can take
on any value between )1 and +1 and by h, which is
the opening angle between a given event arrival

direction and the center of the dipole distribution at

Centaurus A. The overall distribution is:

ndiopole ¼ 1þ a cos h: ð17Þ

4.1.3. Discrete source model

The third model that we will consider is one

with seven discrete sources superimposed on an

isotropic background. For simplicity�s sake, we
will assume that all seven sources have an equal
intensity indirectly determined by a parameter, Fs,
which will be defined as the fraction of the entire

event sample which originates in the seven sources.

We will define our source direction to be the

centroids of the seven hypothetical point sources

proposed by the AGASA collaboration [1]. The

equatorial coordinates used for each point source

are listed in Table 1.
The arrival directions for the events from each

source are assumed to be subjected to magnetic

smearing. That is, in the course of traveling

through space from the source to the point of

observation, the velocity vector of the event is sub-

ject to bending in the galactic and extra-galactic

magnetic fields. We assumed that this bending

produces an apparent source that can be charac-
terized by a Gaussian distribution:

PðDhÞ ¼ Dh

k2
e
�ðDhÞ2

2k2 ; ð18Þ
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where P ðDhÞ is the probability that an event will be
observed with an opening angle, Dh, from the

nominal direction of the apparent source. We will

also assume that the arrival directions of the events

from all the sources are subject to the same degree
of magnetic smearing, parameterized by k0 ¼
1:5105 
 k. The parameter, k0, corresponds to the
68% confidence interval in Dh. For this paper, we
will assume that k0 ¼ 5�. It should be noted that
the nominal direction of the apparent source is not

necessarily the direction of the actual source be-

cause the possibility exists that the path of the

events in question traveled through large regions
of homogeneous magnetic fields.

4.1.4. Dark matter halo model

The fourth model that we will consider is a dark

matter halo source model. Dark matter halos are

characterized by a density profile that is assumed

to take the Navarro–Frenk–White (NFW) form

[19]:

qNFW ¼ q0
rð1þ r=rsÞ2

; ð19Þ

where q0 is a dark matter density parameter, r is
the distance from the center of the halo, and rs is a
critical radius. For our source model, we will

consider the contribution of only the four closest

significant dark matter halos: the Milky Way,

M31, LMC, and M33. We will assume that q0 is
the same for all four sources and that rs scales with
the cube root of the luminosity, L1=3. Thus the
Table 2

Intrinsic DI values for the different source models that we examined i

Source model 1

DI for source model w

exposure

Isotropic 2.035

Dipole enhancement 2.007

Seven source 2.033

Dark matter halo model 1.999

The estimated values of DI with Nd ¼ 1800 for the four proposed sou

aperture (1) and for the four source models superimposed on the esti

values are mathematical descriptors of a data set that are whose num

bin is sampled (in this case four digits). In the case of a real data set wi

digits is constrained by the fluctuations inherent to the sample size.
Milky Way will have: rs;MW ¼ 10:0 kpc, LMC will
have rs;LMC ¼ 0:3 
 rs;MW ¼ 3:0 kpc, M31 will have
rs;M31 ¼ 1:5 
 rs;MW ¼ 15:0 kpc, and M33 will have
rs;M33 ¼ 0:4 
 rs;MW ¼ 4:0 kpc.
We now calculate the information dimension,

DI, for each of the our four models. Since these are

smooth distributions with no statistical fluctua-

tions, we will only use one, computationally lim-

ited value for the number of declinational bands

for each model of Nd ¼ 1080 (i.e. Dh ¼ ð1=6Þ�),
which implies:

Pi ¼ ni
X
i

ni

" #�1

: ð20Þ

Using Eqs. (14) and (20) we can now calculate DI

for each of the four models. The results are in

Table 2 column 1. Note that three of the four

values of DI exceed the analytical limit of 2 for a

2-D surface.

If we consider the analytic limit for the isotropic

case, we have:

DI ¼ �4 ðNdÞ2

p
Pi log Pi
logNd

: ð21Þ

If we then substitute in Eq. (20) we get:

DI ¼
2 logNd þ log 4=p

logNd
; lim

Nd!1
DIðNdÞ ¼ 2: ð22Þ

The reason we obtain values greater than 2 is because
we are working with a finite number of elements on a

surface where the total area does not equal ðNdÞ2.
n Figs. 3 and 5

2

ithout detector DI for source model with detector

exposure

1.967

1.945

1.946

1.978

rce models for the entire sky independent of any real detector�s
mated aperture of an air-fluorescence detector at 40� N. These
ber of significant digits are determined by how extensively each

th a finite number of the observations, the number of significant



Fig. 3. Density profiles for four different source models––(a) isotropic model; (b) dipole enhancement model ða ¼ 1:0Þ; (c) seven source
model ðFs ¼ 0:28Þ; (d) dark matter halo model ðrs ¼ 10 kpc). All four figures are shown in a Hammer–Aitoff projection of equatorial

coordinates (right ascension right to left). The highest density in each panel corresponds to the lightest (red) regions, the lowest density

to the darkest (blue) regions. (For interpretation of the references in colour in this figure legend, the reader is referred to the web

version of this article.)
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4.2. Exposure-dependent source descriptions

For the purpose of this paper, we assume a

hypothetical air-fluorescence detector located at

40� N. This analysis assumes an isotropic distri-
bution for the azimuthal component of the arrival

directions and a zenith angle distribution that re-
mains constant in time. This is what one would

expect for a detector with 360� coverage with
identical detector units and stable atmospheric

conditions. The acceptance of our detector can

thus be defined by two distributions: zenith angle

and sidereal time which are shown in Fig. 4. The

zenith angle distribution is characterized by 100%

acceptance until �50�, at which point it drops off
dramatically due to the lack of a well-defined

profile to assist monocular reconstruction. The

sidereal time distribution is the combination of the

seasonal availability of dark, moonless sky at 40�
N and seasonal climatic changes in a desert locale

(the rainy season is assumed to extend from Feb-

ruary to May which results in a loss of �30% of

exposure).
By defining acceptance this way, we can cal-

culate the exposure of the detector. By also con-

sidering the finite, asymmetric angular resolution,
we can then superimpose the detector exposure

upon the various source models that we previ-

ously examined (Fig. 3 and Table 2, column 1).

We then obtain an effective detector response for

the air fluorescence detector for each of our four

source models. The results are shown in Fig. 5. It

should be emphasized that effective detector effect
is due to the combined effect of asymmetric sky

coverage and angular resolution smearing. A

remarkable consequence of this combination is

the possibility that point sources can take on an

apparently asymmetric shapes due to preferential

orientations of the plane of reconstruction for

events arriving from a specific location in the

physical sky.
We can now determine the value of DI using

the same method as before. The results are shown

in Table 2, column 2. It is interesting to note that

the dark matter halo source model now has a

larger value for DI than the isotropic source

model. By looking at Fig. 5, one can verify that

the superposition of the detector exposure and

source models actually yields a more uniform
apparent distribution for the dark matter halo

source model than it does for the isotropic source

model.



Fig. 4. (a) The distribution of zenith angles for a monocular air-fluorescence detector; (b) the distribution sidereal times for a air-

fluorescence detector located at 40� N in a desert locale (right).

Fig. 5. Effective detector response for the four different source models––(a) isotropic model; (b) dipole enhancement model (a ¼ 1:0);

(c) seven source model ðFs ¼ 0:28Þ; (d) dark matter halo model ðrs ¼ 10 kpc). All four figures are shown in a Hammer–Aitoff projection

of equatorial coordinates (right ascension right to left). The highest density in each panel corresponds to the lightest (red) regions, the

lowest density to the darkest (blue) regions. (For interpretation of the references in colour in this figure legend, the reader is referred to

the web version of this article.)
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5. Calculating DI for finite event samples

So far, we have only considered calculating DI

for smooth distributions. From an experimental

standpoint, it is very difficult to collect enough

data to obtain a smooth distribution. This is

especially true for UHECRs. In order to make a

measurement of DI, we must first determine what

value(s) we should assign to Nd. A reasonable ap-

proach is to assign a scale length to our sample.

Choosing Dh ¼ 0:5�, which approximately reflects
the lowest value that can be obtained from r2 in
Eq. (6), yields Nd ¼ 360.
However, it can be beneficial to actually calcu-

late DI for a range of values around Nd. In Fig.

6(a), we display the values DIðNdÞ over the range
Nd ¼ ½354; 360� for two separate simulated sets

where NShower ¼ 500. These sets yield very similar

values for DI over the full range of values for Nd.

However, if we examine Fig. 6(b) we can see that

for the same two finite samples, the fractional

difference between values of DI can fluctuate sub-

stantially even over small intervals of Nd. While

these fluctuations are typically much smaller than
the difference in DI values between any two sets,

we will take DI to be hDIðNdÞi for the interval:



Fig. 6. (a) DI over a range of values of Nd for two similar finite event sets that have similar values for DI (the dots indicate the values DI

for the first set while the stars indicate the values DI for the second set); (b) the fractional difference in DI for the same two sets over the

range of Nd values.
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Nd ¼ ½354; 360� in order to minimize the statistical
fluctuations in DI between individual sets. This

range was chosen to optimize our computational

ability.

To account for the fact that we no longer have a
smooth distribution for the calculation of the

values of Pi, we refer back to Eq. (13) to see how to
calculate DI for a finite set of elements. This only

requires us to determine a value for NDist. We can
set this value based upon what value we wish for ni
in combination with Eq. (12) (i.e. hnii ¼ 1

ðDnÞ2 where
Fig. 7. Simulated 500 event distributions for four different source

ða ¼ 1:0Þ; (c) seven source model ðFs ¼ 0:28Þ; (d) dark matter halo mod
projection of equatorial coordinates (right ascension right to left). Th

regions, the lowest density to the darkest (blue) regions. (For interpreta

referred to the web version of this article.)
Dn is the fractional Gaussian fluctuation of a bin
with ni ¼ hnii). Then,

NDist ¼
4
p ðNdÞ2hnii
NShower

: ð23Þ

If we then combine Eqs. (9), (13) and (23); we

obtain:

PiðNdÞ ¼
ni
hnii

p3

4ðNdÞ4DXd

: ð24Þ
models––(a) isotropic model; (b) dipole enhancement model

el (rs ¼ 10 kpc). All four figures are shown in a Hammer–Aitoff

e highest density in each panel corresponds to the lightest (red)

tion of the references in colour in this figure legend, the reader is



Fig. 8. Simulated 2000 event distributions for four different source models––(a) isotropic model; (b) dipole enhancement model

(a ¼ 1:0); (c) seven source model ðFs ¼ 0:28); (d) dark matter halo model (rs ¼ 10 kpc). All four figures are shown in a Hammer–Aitoff

projection of equatorial coordinates (right ascension right to left). The highest density in each panel corresponds to the lightest (red)

regions, the lowest density to the darkest (blue) regions. (For interpretation of the references in colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 9. Comparison of distributions of DI values for �500 sets of 500 events between the isotopic source model (shaded) and the other
three source models––(a) dipole enhancement model vs. isotropic model (a ¼ 1:0); (b) seven source model vs. isotropic model

(Fs ¼ 0:28); (c) isotropic model vs. dark matter halo source model (rs ¼ 10 kpc). The vertical line corresponds to the value of DI for the

‘‘real’’ 500 event sample. In all cases the distributions of DI values fit well to a Gaussian curve.
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Fig. 10. Comparison of distributions of DI values for �500 sets of 2000 events between the isotopic source model (shaded) and the
other three source models––(a) dipole enhancement model vs. isotropic model (a ¼ 1:0); (b) seven source model vs. isotropic model

(Fs ¼ 0:28); (c) isotropic model vs. dark matter halo source model (rs ¼ 10 kpc). The vertical line corresponds to the value of DI for the

‘‘real’’ 2000 event sample. In all cases the distributions of DI values fit well to a Gaussian curve.
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We can then calculate DI from Eq. (14):

DI ¼
*

� 1

logNd

XN
i¼1

PiðNdÞ log PiðNdÞ
+
;

Nd ¼ ½354; 360�: ð25Þ

Thus, If we want hnii ¼ 500 and NShower ¼ 500, we

find that NDist ’ 1:65� 105. If NShower ¼ 2000, we

have NDist ’ 4:1� 104.
We now consider two cases: finite event sets

with 500 events and finite event sets with 2000
events. These sets will have the angular resolution

characteristics described in Eqs. (5) and (6). The

exposure will be modeled via the zenith angle and

sidereal time distributions shown in Fig. 4. Fig. 7

contains examples of event sets with all four source

models and NShower ¼ 500 and Fig. 8 contains

examples of events sets with all four previously

described source models and NShower ¼ 2000.
In Figs. 7 and 8 one can see the that these dis-

tributions of arrival directions have a far greater
degree of statistical fluctuation than the smooth

distributions shown in Fig. 5. Because of the

fluctuations in our simulated event samples, the

value of DI varies significantly (see Figs. 9 and 10)
from one simulated set to the next. In Figs. 9 and

10, we examine the distribution of DI values for

�500 sets (of 500 and 2000 events respectively).
We see that the distribution of 500 event samples

have both a lower mean value and larger-width

than the 2000 event samples.
6. Application to anisotropy analysis

We now need to develop a scheme by which we

can apply fractal dimensionality analysis to a real

data set. In the case of a real data set, we will be

dealing with only one value of DI. By itself DI is

insufficient to characterize the data set; DI fluctu-

ates a great deal due to variation in NShower.
However, a comparison between the value of DI
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for a real event sample and a distribution of DI

values (with the same NShower and NDist values as the
real data) for a series of simulated data sets of a

given source model does provide a viable mea-

surement of anisotropy.

We can demonstrate this by considering a single
simulated event sample generated with an isotropic

source model. We will suppose this sample to be

our ‘‘real’’ data. We consider the isotropic simu-

lated event samples shown in Figs. 7(a) and 8(a).

We will once again stipulate that hnii ¼ 500 which

means that in the case of NShower ¼ 500, we have:

NDist ’ 1:6� 105 which leads to DI ¼ 1:89715 and
in the case of NShower ¼ 2000, we have: NDist ’
4� 104 which leads to DI ¼ 1:93920.
In Figs. 9 and 10, we demonstrated that for a

fixed scaling parameter the distribution of DI val-

ues for a large number of simulated sets fits well to

a Gaussian curve. By establishing the relationship
Fig. 11. Study of the dependence of DI upon a for a dipole enhan
NShower ¼ 500 (zoomed); 90% confidence interval: [)0.29,0.36]; (c) NSho
confidence interval: [)0.065,0.24]. In each case, the solid horizontal li
The vertical lines in (b) and (d) indicate the projection of the nominal
between the distribution of DI values and the

scaling parameter in each model, we can establish

a 90% confidence interval on the scaling parameter

for that model.

6.1. Dipole enhancement source model

In the case of the dipole enhancement source

model in Eq. (17), the scaling parameter is a. By
varying a between )1 and 1, we develop a curve
which will show the relationship between DI and a.
By considering the actual value of DI for the ‘‘real’’

data set, we then establish a nominal value for a
and a 90% confidence interval. The results for both
NShower ¼ 500 and NShower ¼ 2000 are shown in Fig.

11. In the case of our simulated isotropic set with

NShower ¼ 500, a ¼ 0:02� 0:21 with a 90% confi-

dence interval of [)0.29,0.36]. In the case of our
simulated isotropic set with NShower ¼ 2000, a ¼
cement source model––(a) NShower ¼ 500; a ¼ 0:02� 0:21; (b)
wer ¼ 2000; a ¼ 0:075� 0:085; (d) NShower ¼ 2000 (zoomed); 90%

ne indicates the value of DI for the simulated isotropic data set.

value and 90% and 95% confidence intervals of a on the x-axis.
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0:075� 0:085 with a 90% confidence interval of

[)0.065, 0.24]. These results tell us that our ‘‘real’’
data can, at the 1r level of up to 0.2. We notice

that in Fig. 11, there are potentially two suitable

intervals of a that possess similar values of DI. This

emphasizes the necessity of making density plots
to assure by visual inspection that the appropriate

interval is chosen.

6.2. Seven source model

In the case of the seven source model, the

scaling parameter is Fs, the fraction of the total
Fig. 12. Study of the dependence of DI upon Fs for the seven sour
confidence upper limit¼ 0.16; (c) NShower ¼ 2000; (d) NShower ¼ 2000 (

solid horizontal line indicates the value of DI for the simulated isotropi

of 90% and 95% confidence upper limits of rs on the x-axis.
event sample that is produced by the discrete

sources. By varying Fs between 0 and 0.40, we

develop a curve which shows the relationship be-

tween DI and Fs. By considering the actual value of
DI for the ‘‘real’’ data set, we then establish a

nominal value for Fs and a 90% confidence upper
limit for Fs. The results for both NShower ¼ 500 and

NShower ¼ 2000 are shown in Fig. 12. In the case of

our simulated isotropic set with NShower ¼ 500, we

have a 90% confidence upper limit of Fs ¼ 0:16. In
the case of our simulated isotropic set with

NShower ¼ 2000, we have a 90% confidence upper

limit of Fs ¼ 0:04. This tells us that our ‘‘real’’ data
ce model––(a) NShower ¼ 500; (b) NShower ¼ 500 (zoomed); 90%

zoomed); 90% confidence upper limit¼ 0.04. In each case, the
c data set. The vertical lines in (b) and (d) indicate the projection



Fig. 13. Comparison of the distribution of DI values for a dark matter halo source model with a full range of hypothesized values for

rs––(a) NShower ¼ 500, the dark matter halo model can be rejected at a levelP 3:6r; (b) NShower ¼ 2000, the dark matter halo model can

be rejected at a levelP 7:0r. In each case, the solid horizontal line indicates the value of DI for the simulated isotropic data set.
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can have, at most, 16% (for 500 events) or 4% (for

2000 events) of these events coming from the seven

sources.

6.3. Dark matter halo source model

In the case of the dark matter halo source

model in Eq. (19), the variable parameter is rs, the
critical radius in the NFW profile [19]. By varying

rs between 5.0 and 15.0 kpc we develop the curve
which will demonstrate the dependence of DI upon
rs. We can then show that the dark matter halo

source model can be rejected with at level P 3:6r
for NShower ¼ 500 and at a level of P 7:0r for

NShower ¼ 2000 for the full range of hypothesized

values for rs. The results are shown in Fig. 13.
7. Discussion

Fractal dimensionality has several advantages

over conventional anisotropy techniques. First of

all, it naturally accommodates angular resolution.

This is extremely important when considering

event sets with asymmetric errors, when analysing

event sets with variable values for the angular

resolution (e.g. dependent on energy or geometry),
or when combining multiple data sets from dif-

ferent detectors for a single analysis.

Another advantage that fractal dimensionality

possesses is the ability to accommodate any aper-
ture. Because this method makes a relative com-

parison between a sample and simulations using

the same aperture, the physical aperture is simply
folded into the analysis. This once again allows the

combination of data from multiple detectors with

very different apertures. It also allows the analysis

of extremely complicated apertures without the

need to include normalizing factors that needlessly

complicate the predictability of the Poisson fluc-

tuations in the data sample.

Perhaps the most striking feature of the fractal
dimensionality method is that it only requires a

single measurement of one�s data. While fractal
dimensionality will not always provide better sta-

tistical significance than a direct measurement for a

specific anisotropy, the fact that one considers only

a single measurement of the data, for any number of

potential anisotropic models, provides one the

means to simultaneously reject or accept all of those
models without the ensuing statistical penalty.

A possible way of increasing the sensitivity of

the fractal dimensionality method is by consider-

ing the general case of Dq. By varying the value of

q to something other than 1, it might be possible to
increase the sensitivity of this method to various

anisotropies.

The fractal dimensionality method does have
some weaknesses. First and foremost is the po-

tential for multiple solutions as was demonstrated

in the dipole source model above. The method

cannot be applied blindly. It requires a careful
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inspection of both the data sample and the simu-

lated samples in order to resolve possible ambi-

guities. Another drawback is the amount of

computation required to calculate DI for a large

number of simulated data sets. Producing just the

plots in Fig. 11(c) consumed the equivalent of
�1000 CPU hours on 1 GHz Athlon machine.

Another limitation is the potential for different

source models to effectively cancel each other out

and yield a potentially deceiving value of DI that

resembles that of an isotropic source. One solution

for this is to separately consider the value of DI for

different celestial regions in the data. Of course,

this will incur a statistical penalty.
Two particularly useful roles for fractal dimen-

sionality analysis are (a) as a first test to ascertain if

a sample possesses the same heterogeneity as the

expected isotropic background and (b) as a wholly

independent observable that can be used to confirm

the results of a direct measurement.

Today the HiRes detector continues to accu-

mulate data. Soon the Auger detector will be
acquiring data at seven times the rate of HiRes. As

the number of observed UHECRs continues to

rise, fractal dimensionality will grow ever more

effective in its ability to discern the between po-

tential source models in the continuing effort to

solve the mystery of UHECRs.
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