The Analysis of Downward Terrestrial Gamma-ray Flashes Using a Large-area Cosmic Ray Detector

Jackson Remington

Ph.D. Thesis Defense Telescope Array Project Department of Physics and Astronomy, University of Utah

Telescope Array Project

R.U. Abbasi¹, T. Abu-Zavyad^{1,2}, M. Allen², Y. Arai³, R. Arimura³, E. Barcikowski². J.W. Belz², D.R. Bergman², S.A. Blake², I. Buckland², R. Cady², B.G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, T. Fujii⁷, K. Fujisue⁶, K. Fujita³, R. Fujiwara³, M. Fukushima⁶, R. Fukushima³, G. Furlich², N. Globus^{8,9,10}, R. Gonzalez², W. Hanlon², M. Hayashi¹¹ N. Havashida¹², K. Hibino¹², R. Higuchi⁶, K. Honda¹³, D. Ikeda¹², T. Inadomi¹⁴ N. Inoue¹⁵, T. Ishii¹³, H. Ito⁸, D. Ivanov², H. Iwakura¹⁴, A. Iwasaki³, H.M. Jeong¹⁶ S. Jeong¹⁶, C.C.H. Jui², K. Kadota¹⁷, F. Kakimoto¹², O. Kalashev¹⁸, K. Kasahara¹⁹ S. Kasami²⁰, H. Kawai²¹, S. Kawakami³, S. Kawana¹⁵, K. Kawata⁶, I. Kharuk¹⁸, E. Kido⁸ H.B. Kim⁴, J.H. Kim², J.H. Kim², M.H. Kim¹⁶, S.W. Kim¹⁶, Y. Kimura³, S. Kishigami³, Y. Kubota¹⁴, S. Kurisu¹⁴, V. Kuzmin^{*18}, M. Kuznetsov^{18,22}, Y.J. Kwon²³, K.H. Lee¹⁶. B. Lubsandorzhiev¹⁸, J.P. Lundquist^{2,24}, K. Machida¹³, H. Matsumiya³, T. Matsuyama³ J.N. Matthews², R. Mavta³, M. Minamino³, K. Mukai¹³, I. Mvers², S. Nagataki⁸, K. Nakai³ R. Nakamura¹⁴, T. Nakamura²⁵, T. Nakamura¹⁴, Y. Nakamura¹⁴, A. Nakazawa¹⁴, E. Nishio²⁰, T. Nonaka⁶, H. Oda³, S. Ogio^{3,26}, M. Ohnishi⁶, H. Ohoka⁶, Y. Oku²⁰, T. Okuda²⁷, Y. Omura³, M. Ono⁸, R. Onogi³, A. Oshima³, S. Ozawa²⁸, I.H. Park¹⁶, M. Potts², M.S. Pshirkov^{18,29}, J. Remington², D.C. Rodriguez², G.I. Rubtsov¹⁸, D. Rvu³⁰ H. Sagawa⁶, R. Sahara³, Y. Saito¹⁴, N. Sakaki⁶, T. Sako⁶, N. Sakurai³, K. Sano¹⁴, K. Sato³ T. Seki¹⁴, K. Sekino⁶, P.D. Shah², Y. Shibasaki¹⁴, F. Shibata¹³, N. Shibata²⁰, T. Shibata⁶ H. Shimodaira⁶, B.K. Shin³⁰, H.S. Shin⁶, D. Shinto²⁰, J.D. Smith², P. Sokolsky², N. Sone¹⁴ B.T. Stokes², T.A. Stroman², Y. Takagi³, Y. Takahashi³, M. Takamura⁵, M. Takeda⁶, R. Takeishi⁶, A. Taketa³¹, M. Takita⁶, Y. Tameda²⁰, H. Tanaka³, K. Tanaka³², M. Tanaka³³, Y. Tanoue³, S.B. Thomas², G.B. Thomson², P. Tinyakov^{18,22}, I. Tkachev¹⁸, H. Tokuno³⁴, T. Tomida¹⁴, S. Troitsky¹⁸, R. Tsuda³, Y. Tsunesada^{3,26}, Y. Uchihori³⁵. S. Udo¹², T. Uehama¹⁴, F. Urban³⁶, T. Wong², K. Yada⁶, M. Yamamoto¹⁴, K. Yamazaki¹² J. Yang³⁷, K. Yashiro⁵, F. Yoshida²⁰, Y. Yoshioka¹⁴, Y. Zhezher^{6,18}, and Z. Zundel²

¹Department of Physics, Loyola University Chicago, Chicago, Illinois, USA ² High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA ³Graduate School of Science, Osaka City University, Osaka, Osaka, Japan ⁴Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea ⁵Department of Physics, Tokyo University of Science, Noda, Chiba, Japan ⁶Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan ⁷ The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan ⁸Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan ⁹Center for Computational Astrophysics, Flatiron Institute, Simons Foundation, New York, New York, USA ¹⁰ ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Dolni Brezany, Czech Republic ¹¹Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan ¹² Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan ¹³Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan ¹⁴Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan ¹⁵ The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan ¹⁶Department of Physics, SungKyunKwan University, Jang-an-gu, Suwon, Korea ¹⁷ Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan ¹⁸Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ¹⁹ Faculty of Systems Engineering and Science, Shibaura Institute of Technology, Minato-ku, Tokyo, Japan ²⁰ Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka, Japan ²¹ Department of Physics, Chiba University, Chiba, Chiba, Japan ²²Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium ²³Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea ²⁴Center for Astrophysics and Cosmology, University of Nova Gorica, Nova Gorica, Slovenia ²⁵Faculty of Science, Kochi University, Kochi, Kochi, Japan ²⁶Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka City University, Osaka, Osaka, Japan ²⁷ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan ²⁸Quantum ICT Advanced Development Center, National Institute for Information and Communications Technology, Koganei, Tokuo, Japan ²⁹ Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia ³⁰Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan,

Korea

³¹ Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan
 ³² Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan
 ³³ Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaroki, Japan
 ³⁴ Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan
 ³⁵ Department of Research Planning and Promotion, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, Japan
 ³⁶ CEICO, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
 ³⁷ Department of Physics and Institute for the Early Universe, Ewba Womans University, Seodaaemun-gu, Scoul, Korea

TA / LMA Collaboration

R. Abbasi¹, J. Belz², R. LeVon², P. Krehbiel³, J. Remington², W. Rison³, D. Rodeheffer³, M. Stanley³, K. Smout²

> ¹ Department of Physics, Loyola University ² Department of Physics, University of Utah ³ Langmuir Laboratory, New Mexico Institute of Mining and Technology

The work reported here was partially supported by National Science Foundation grants AGS-1205727, AGS-1613260, AGS-1720600, and AGS-1844306. We greatly acknowledge the contributions of our colleagues at the Telescope Array Cosmic Ray Observatory. We also thank VAISALA for providing NLDN data under their academic research use policy.

Outline

- 1. Background of Terrestrial Gamma-ray Flashes (TGFs)
 - a. History of TGFs
 - b. Thundercloud and lightning anatomy
 - c. TGF production and development
- 2. Instrumentation
 - a. Telescope Array Surface Detectors
 - b. Lightning detectors
- 3. TGF Observations at Telescope Array
 - a. Previous observations 2008-2016
 - b. 2018 TGFs: observations
 - c. 2018 TGFs: analysis
 - d. 2018 TGFs: interpretation
- 4. Conclusion

Terrestrial Gamma-ray Flashes (TGFs)

TGFs are electromagnetic showers produced during lightning flashes

Satellite observations of TGFs:

- Contain 10¹⁵-10¹⁹ photons
- Have characteristic gamma-ray energy of 7 MeV
- Occur in the initial stages of lightning
- Durations of 10s-100s of μ s

Stages of Lightning

- 1. Leader stage creates a conducting pathway
 - $\circ \qquad \text{Average leader speed 10^{5}-10^{6}} \\ \text{m/s}$
 - 8 ms leader time
- 2. Once a pathway is formed, the storm "shorts out"
- 3. Bright return stroke(s) discharge the electric field
 - Can occur multiple times in a single flash (15 ms separation)

40,000 FPS camera:

 \rightarrow 1 ms of lightning = 1.3 s of video

Stages of Lightning

- Leaders are hot, conducting channels of air allowing current to flow
 - Leaders advance discretely in ~50 m steps at 10^{5} - 10^{6} m/s
 - TGF production is associated with the leader stage
- Streamers are non-conducting systems of ionized air
- The bright return stroke(s) occur once the leader "shorts out" charge regions

Leader stepping process (left)

- (a): Electrons concentrate in the leader tip and generate strong fields
- (b): Charges separate ahead of the leader and generate streamer systems
- (c): The air heats up and becomes fully conducting as a disconnected 'space stem'
- (d): The stem reconnects with the existing leader
- (e): Potential transfers to the new leader step and the process repeats

TGF Production and Development

- Electrons gain energy from the thunderstorm's ambient electric field
- Lose energy due to atmospheric interactions primarily bremsstrahlung radiation and ionization
- Electrons above the curve gain more energy from the applied electric field than they lose due to atmospheric interactions

TGF Production and Development

- Electrons above the curve gain more energy from the applied electric field than they lose due to atmospheric interactions
- Cascades of particles above the curve multiply quickly, called relativistic runaway electron avalanches (RREA)
- Electrons must exist above the curve in abundance in order to seed RREA cascades
 - Cosmic ray secondaries

Jackson Remington - Thesis Defense - 2021/09/24

Cold runaway mechanisms (supported by this study)

Backscattered positrons and photons can seeed additional showers in a process called feedback, greatly amplifying the shower fluence and duration

TGF Production and Development

- Our observations suggest that RREA is seeded during leader steps
 - RREA develops in the larger-scale thunderstorm fields (~10⁵ V/m)
 - \circ E field enhanced near leader tips (~10⁶ V/m)
 - E field enhanced further by advancing streamer systems (~10⁷ V/m)
- Cold electrons are ejected at relativistic speeds (~10⁶ eV)

Outline

- 1. Background of Terrestrial Gamma-ray Flashes (TGFs)
 - a. History of TGFs
 - b. Thundercloud and lightning anatomy
 - c. TGF production and development

2. Instrumentation

- a. Telescope Array Surface Detectors
- b. Lightning detectors
- 3. TGF Observations at Telescope Array
 - a. Previous observations 2008-2016
 - b. 2018 TGFs: observations
 - c. 2018 TGFs: analysis
 - d. 2018 TGFs: interpretation
- 4. Conclusion

Instrumentation: Telescope Array

- 507 scintillation detectors (SDs) covering the 700 km² main array
 - Able to capture the entire ground-level footprint
- TASDs contain two layers of plastic scintillator for detecting charged particles
 - Efficient for charged particle detection
 - Inefficient for neutral gamma-rays
- Energy deposit in the form of fluorescence light is captured for each layer and counted on local electronics.

6 m

Instrumentation: gamma-ray detection

- In some cases, TASD waveforms show individual particle hits
 - Energy deposit is consistent with 1 vertical equivalent muon (VEM), or ~2 MeV/cm
 - Minimum energy case:
 - A Compton-scattered electron deposits all of its energy into one layer of scintillator (2.4 MeV for 1.2 cm)
 - If produced inside the scintillator itself (no energy loss to exclosure), the minimum-energy photon had 2.4+0.2=**2.6 MeV**
 - Penetrating case:
 - An electron penetrates both scintillators and the steel separating plate (~1.4 MeV loss)
 - Minimum photon energy = 2.4+1.4+2.4+0.2=**6.4 MeV**

(Keep in mind these are lower limits - the likelihood of grazing angles means the original photons probably had more energy)

Instrumentation: Lightning Detectors

- Lightning Mapping Array (LMA) locates lightning activity sources in 3D
 - VHF 60-66 MHz
- Sferic sensors measure changes in the local electric field
 - Slow antennas (SAs) measure overall field development ($\tau = 10$ s)
 - Fast antennas (FAs) measure quick fluctuations ($\tau = 100 \ \mu s$)
- Broadband interferometer locates lightning activity sources in 2D, higher resolution
 - 20-80 MHz

Outline

- 1. Background of Terrestrial Gamma-ray Flashes (TGFs)
 - a. History of TGFs
 - b. Thundercloud and lightning anatomy
 - c. TGF production and development
- 2. Instrumentation
 - a. Telescope Array Surface Detectors
 - b. Lightning detectors

3. TGF Observations at Telescope Array

- a. Previous observations 2008-2016
- b. 2018 TGFs: observations
- c. 2018 TGFs: analysis
- d. 2018 TGFs: interpretation
- 4. Conclusion

Previous TGF Observations at Telescope Array

<u> 2008 - 2013</u>

- 10 'burst' events defined as triggering TASDs 3+ times within 1 ms
 - Long, complex signals
- Many occur during lightning flashes recorded by National Lightning Detection Network (NLDN)
 - Nationwide commercial lightning data with ~300 m resolution
 - \circ \quad Some trajectories point back to NLDN flash locations

Previous TGF Observations at Telescope Array

<u> 2014 - 2016</u>

- 10 new events after installation of the LMA and slow sferic sensors
- Data shows that TGFs are associated with the very early stages of leader development
- TGFs arrive in bursts lasting hundreds of microseconds

0.65

1.15

13

2018 TGFs: Observations

- Four TGFs from August-October 2018
 - TGFs A,C,D consisted of 2 triggers, B 0 was a single trigger.
- All four occurred in the first 1-2 ms of downward negative lightning
 - TGFs A,B,C ended in cloud-to-ground Ο strokes, D was an intracloud flash

15:23:25 UT

2018 TGFs: Analysis

- INTF does not detect the TGF
- TASDs do not detect lightning
 - Propagation delays result in relative timing differences up to 100 μ s (a+b vs. a+c)
 - Goal resolution is $1 \mu s$
- TGF altitude depends on source time, which depends on altitude, etc.

TGF Event 2018/08/02 15:23:25

2018 TGFs: Analysis

- Resulting average errors:
 - Horizontal (x,y): 140 m
 - Vertical (z): 25 m
 - Timing (t): 0.6 μ s

2018 TGFs: Results

Propagation delays removed -TASD, INTF, and sferic data can be directly compared

First ground observations of IBPs and TGFs

The IBPs and TGFs occur during strong leader steps

Timing resolution $< 1 \mu s$ can identify IBP substructure and breakdown processes

2018 TGFs: Results

- Strongest burst of each TGF occurs during the strongest IBP
- Leader step development is faster, stronger, and more linear
 - Power and speed of leader propagation indicates fast negative breakdown (FNB)
- IBPs also have strong sub-pulses, sometimes correlated with TGF production
- Step discontinuity in leader propagation during each TGF onset

2018 TGFs: Interpretation

- Downward TGFs are produced during strong IBPs and periods of FNB in the early leader steps of downward negative lightning
- **TGF sources have durations of ~3-8 µs**, continuing until FNB dies out
 - \cap Simulations show that the signal durations at the ground reflect the true durations of the source
 - 95% of particles from an instantaneous source arrive in 60 ns
- Since FNB is a streamer-based process, these results support the cold runaway model of TGF production
 - Advancing streamer systems enhance local electric fields to the point of 0 seeding RREA

Jackson Remington - Thesis Defense - 2021/09/24

Outline

- 1. Background of Terrestrial Gamma-ray Flashes (TGFs)
 - a. History of TGFs
 - b. Thundercloud and lightning anatomy
 - c. TGF production and development
- 2. Instrumentation
 - a. Telescope Array Surface Detectors
 - b. Lightning detectors
- 3. TGF Observations at Telescope Array
 - a. Previous observations 2008-2016
 - b. 2018 TGFs: observations
 - c. 2018 TGFs: analysis
 - d. 2018 TGFs: interpretation
- 4. Conclusion

Conclusion

The observations at Telescope Array constitute a significant portion of all downward TGFs

These downward TGFs...

- are **produced in the first 1-2 ms** of downward negative lightning at altitudes of 2.8-3.2 km
- are produced during strong IBPs and streamer-based FNB, supporting the cold runaway model of TGF production
- individually **last <10 \mus**, but can occur in sequences spanning up to 500 μ s
- produce showers at ground level having diameters 3-5 km, corresponding to half-opening angles of 25-40°
- are consistent with simulated showers consisting of 10¹²-10¹⁴ photons, with evidence of some gamma-rays having at least 6.4 MeV

Future investigations:

- Increase resolution with a second interferometer for stereo measurements
 - o Installed 2020
- Additional lightning detector upgrades
 - Electric field mill installed 2021
 - High-speed optical camera installed 2021
- Investigate differences between upward and downward TGFs
 - Downward TGFs have shorter duration, smaller fluence
- Multi-messenger TGFs?

2021/09/11 Flash

- ~6 km footprint diameter
- > 16 GeV in one TASD
- Leader speed $\sim 2.6 \times 10^6$ m/s (2 ms)

TGF Publications

Telescope Array Publications

- Observation of the Origin of Downward
 Terrestrial Gamma-ray Flashes
 - J. Belz, et al. (2020). JGR: Atmos, 125 https://doi.org/10.1029/2019JD031940
- Gamma-ray Showers Observed at Ground Level in Coincidence With Downward Lightning Leaders
 - R Abbasi, et al. (2018). JGR: Atmos, 123 https://doi.org/10.1029/2017JD027931
- The Bursts of High Energy Events Observed by the Telescope Array Surface Detector
 - R. Abbasi, et al. (2017). *Phys. Lett. A, 381* https://dx.doi.org/10.1016/j.physleta.2017.06.022

- Search for Large-scale Anisotropy on Arrival Directions of Ultra-high-energy Cosmic Rays Observed with the Telescope Array Experiment
 - R. Abbasi, et al. (2020). Astrophys. J. Lett., 898 https://doi.org/10.3847/2041-8213/aba0bc
- Evidence for a Supergalactic Structure of Magnetic Deflection Multiplets of Ultra-High Energy Cosmic Rays
 - R. Abbasi, et al. (2020). Astrophys. J., 899 https://doi.org/10.3847/1538-4357/aba26c
- Search for Point Sources of Ultra-High-Energy Photons with the Telescope Array Surface Detector
 - R. Abbasi, et al. (2020). Monthly Notices of the Royal Astronomical Society, 492 https://doi.org/10.1093/mnras/stz3618
- Search for Ultra-High-Energy Neutrinos with the Telescope Array Surface Detector
 - R. Abbasi, et al. (2020). J. Exp. Their. Phys., 131 https://doi.org/10.31857/S0044451020080052
- Constraints on the Diffuse Photon Flux with Energies Above 10¹⁸ eV Using the Surface Detector of the Telescope Array Experiment
 - R. Abbasi, et al. (2019). J. Astropart. Phys., 110 https://doi.org/10.1016/j.astropartphys.2019.03.003
- Testing a Reported Correlation Between Arrival Directions of Ultra-High-Energy Cosmic Rays and a Flux Pattern From Nearby Starburst Galaxies Using Telescope Array Data
 - R Abbasi, et al. (2019). Astrophys. J. Lett., 867 https://doi.org/10.3847/2041-8213/aaebf9
- Mass Composition of Ultrahigh-Energy Cosmic Rays with the Telescope Array Surface Detector Data
 - R Abbasi, et al. (2019). Phys. Rev. D, 99 https://doi.org/10.1103/PhysRevD.99.022002
- Study of Muons from Ultrahigh Energy Cosmic Ray Air Showers Measured With the Telescope Array Experiment
 - R. Abbasi, et al. (2018). Phys. Rev. D, 98 https://doi.org/10.1103/PhysRevD.98.022002

Supplementary Slides

Supplementary Slides

- 1. Lightning Leaders
 - a. Leader development details
 - b. FNB, streamers, and E-field enhancement
 - c. EM shower composition
- 2. Instrumentation details
 - a. Telescope Array Surface Detector (TASD)
 - b. Lightning Mapping Array (LMA)
 - c. Sferic sensors (SA + FA)
 - d. Broadband interferometer (INTF)
- 3. 2018 TGFs
 - a. Error analysis details
 - b. Results details
 - c. Comparison of upward and downward flashes
- 4. Optical camera footage

Stages of Lightning

- Leaders are hot, conducting channels of ionized air allowing current to flow
 - Leader initiate at the sharp corners of ice crystals
 - Leaders develop discretely in ~50 m steps
 - TGF production is associated with the leader stage
- The bright return stroke(s) occur once the leader creates a pathway between charge regions

Leader stepping process (left)

- (a): Electrons concentrate in the leader tip and generate strong fields
- (b): Charges separate ahead of the leader and generate streamer systems
- (c): The air heats up and becomes fully conducting as a disconnected 'space stem'
- (d): The stem reconnects with the existing leader
- (e): Potential transfers to the new leader step and the process repeats

Fast Negative Breakdown (FNB)

Large-scale thunderstorm E field (RREA Threshold): Leader tip E field enhancement 10⁶-10⁷ V/m FNB E field enhancement x10

~10⁷ V/m (cold runaway)

Attanasio, A., da Silva, C., Krehbiel, P. (2021). unpublished

۲/۳

EUniform

Unifor

200 m 6x10⁵

Electromagnetic Showers

Driven EM shower (RREA): ~50% photons ~50% electrons + positrons

Typical EM shower: ~90% photons, ~10% electrons + positrons

Instrumentation: Telescope Array

- 507 scintillation detectors (SDs) covering the 700 km² main array
 - An expansion to 4x size is underway, but data of this study was recorded only on the main array
 - \circ $\,$ $\,$ Fluorescence detectors (FDs) data not used in this study
- TASDs contain two layers of plastic scintillator for detecting charged particles.
- Energy deposit in the form of fluorescence light is captured for each layer and counted on local electronics.

Instrumentation: TASD RF Interference

FL03: 2016/05/10 02:41:50

Cloud-to-ground lightning stroke only 78 m from TASD 0922 caused pedestal and FADC fluctuations (@ ~13 and 15 μ s)

Instrumentation: Lightning Mapping Array (LMA)

- 11 detectors spread over main TA detecting narrow bipolar events
 - Installed 2013 by Langmuir Laboratory for Atmospheric Ο Research
- Time-of-arrival analysis determines 3D locations of individual sources (a few per ms)
- Errors of a similar (larger) array:
 - 40-50 ns in t \bigcirc
 - 10-50 m in x, y 0
 - 20-100 m in z \bigcirc

22:52:51

Instrumentation: Sferic Sensors

- Radio atmospherics (sferics) are RF pulses produced by breakdown activity from 0.1 Hz-10 MHz.
 - Low signal attenuation means these can be 0 detected from 100s of km range - strongest in VI F 3-30 kHz
- Charge is induced on the antenna's flat plate by varying fields
 - Plate is discharged via adjustable RC circuit Ο
 - Current is integrated to obtain a voltage 0 proportional to the applied field
- The circuit's decay time can be adjusted to filter fluctuations $\tau = RC$

Instrumentation: Broadband Interferometer (INTF)

- Similar to the sferic sensors, the INTF collects induced charge and reads the voltage
- No RC circuit or integrator, sensitive to VHF impulses 20-80 MHz produced by small-scale breakdown
- Identifies 2D source positions (a few per μs)
- Typical errors:
 - ~100 ns in t
 - \circ ~ 0.1° in elv, azi

2018 TGFs: Analysis Errors

Coordinates of TGF sources are determined by four measurements:

• x, y (LMA) standard error of all LMA points within ±1 ms = $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

- \circ t (TASD) uncertainty in TASD trigger time = 40 ns
- z (INTF) standard error of INTF points within $\pm 4 \,\mu s = \frac{\sigma}{\sqrt{n}}$
- Standard error can be propagated through iterative method using:

$$\delta f = \sqrt{\left(\frac{\partial f}{\partial x_1}\delta x_1\right)^2 + \ldots + \left(\frac{\partial f}{\partial x_n}\delta x_n\right)^2}$$

- Resulting average errors:
 - Horizontal (x,y): 140 m
 - Vertical (z): 25 m
 - Timing (t): 0.6 μ s

Event	D	\mathbf{z}_a	\mathbf{t}_a	ZFNB	\mathbf{t}_{FNB}	VFNB
	(km)	(km)	(μs)	(m)	(μs)	(m/s)
TGF A	16.96	3.21	616,981.7	150	10.0	1.5×10^{7}
	± 0.15	± 0.03	± 0.6			
TGF B	16.64	2.92	42,331.7	100	3.7	2.7×10^{7}
	± 0.08	± 0.02	± 0.3			
TGF C	15.98	2.77	913,935.1	120	4.7	2.6×10^{7}
	± 0.04	± 0.01	± 0.2			
TGF D	23.9	3.02	688,600.1	240	13.4	1.8×10^{7}
	± 0.3	± 0.04	± 1.4			

Effect of each measurement on final solution of TGF A

Measurement	Value	Error	1σ effect on z_a	1σ effect on t_a
$x_a \ (\mathrm{km})$	-4.6	0.187	0.010 km (33%)	$0.22 \ \mu s \ (37\%)$
y_a (km)	-16.3	0.143	0.026 km (87%)	0.24 μs (39%)
$t_b \ (\mu s)$	616,987.25	0.04	0 km (0%)	0.04 µs (6.7%)
θ (deg)	10.73	0.026	0.002 km (6.7%)	$0.01 \ \mu s \ (1.6\%)$

2018 TGFs: Results

- Strongest burst of each TGF occurs during the strongest IBP
- Leader step development is faster, stronger, and more linear
 - Power and speed of leader propagation indicates fast negative breakdown (FNB)
- IBPs also have strong sub-pulses, sometimes correlated with TGF production
- Step discontinuity in leader propagation during each TGF onset

2018 TGFs: Comparison to upward flashes

Downward TGF-producing cloud-to-ground flash

- Downward TGFs consist of 10¹²-10¹⁴ photons
- \circ Durations of 5-10 μ s

- Upward TGFs consist of 10¹⁵-10¹⁹ photons
- Durations of 20-200 μ s

/ation [deg]

40

2018 TGFs: Comparison to upward flashes

Downward leader steps (0-5 km)

- Step lengths 3-50 m
- Durations of 5-50 μ s
- Average speeds 1-30 x 10⁵ m/s

(Malan et al. (1935))

2018/08/02 15:24:34.78 UT

Time [µsec]

Upward leader steps (10 km)

- Step lengths >200 m
- Durations of ~4 ms
- Average speeds $\sim 10^4$ m/s

(Edens et al. (2014)

Optical Camera - Positive Cloud-to-ground Flash

Phantom V2012 40,000 FPS

Aug. 18, 2021 10:25:50 UTC

