Cerenkov Events Seen by the TALE Air Fluorescence Detector

Tareq AbuZayyad University of Utah

APS April Meeting 04/06/2014

Outline

- **TA** Low Energy extension (TALE) Fluorescence Detector.
- Cerenkov Events
- Reconstruction Method / Performance
- Data Set
- A First Spectrum
- Summary and Outlook

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

 ¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University,
 ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University

Middle Drum TALE Observatory Site (14+10 Telescopes)

Middle Drum TA/TALE Viewing Range

- TAMD + TALE
- 14 lower telescopes make up TA (Middle Drum) Detector.
- 10 higher telescope (new addition) make up the TA-Low Energy extension Detector.
- TALE telescopes equipped with (HiRes2) FADC electronics.

Example Fluorescence event seen by TALE FD

- Five telescope (eight with ring 1-2 mirrors) event.
- Event duration ~ few micro-seconds
- Long angular extent
- Likely to trigger ground array
- Threshold ~3e16 eV

nergy:	0.530 EeV
Shower max size:	3.565e+08 particles
Shower max depth:	631.247 g/cm ²
Profile Fit χ ² /ndf:	1.2395
Rp Magnitude: 5.839 ψ angle: 55.1 degree) km es
Shower azimuthal ar	ngle: 8.2 degrees
Shower zenith angle	: 48.0 degrees
Angle to Magnetic fi	eld: 60.5 degrees

Example Cerenkov event seen by TALE FD

- Most C'kov events are single telescope
- Event duration
 ~100ns ~600 ns
- Short angular extent
- Unlikely to trigger surface detector
- Threshold ~3e15 eV

TALE Event Reconstruction

- Event reconstruction entails reconstructing:
 - Shower geometry:

- Required for profile/energy reconstruction
- Arrival direction of primary particle (anisotropy)
- Shower profile/energy:
 - Primary particle energy (spectrum)
 - Profile xmax indicates particle type (composition)

TALE Event Reconstruction

• Event reconstruction method:

- TALE Cerenkov events are reconstructed as *monocular* events:
 - Surface array data not available for vast majority of events (energy too low, and/or core location outside of array)
- Profile constrained Geometry Fit (PCGF) method (developed and used for HiRes-I analysis) is adapted for TALE.
 - Event angular extent (track-length) too short.

- Corsika / IACT (arXiv:0808.2253 [astro-ph])
 - Full 3D MC shower development
 - Cerenkov photons production
 - Cerenkov photons detection (sphere surrounding telescope mirror)
- We can test our reconstruction code (and parameterizations) *against an external, "true MC" simulation*.

Events with reconstructed E > 4 PeV

400

TALE Trigger Aperture

- Protons
 penetrate deeper
 and are more
 likely to trigger.
- At higher energies, composition dependence becomes less pronounced.

TALE Cerenkov ReconstructibleAperture

- Cut on Cerenkov fraction limits growth of aperture at high energies.
- Iron/Proton reconstruction efficiency slightly different.
- Note: Above 10¹⁷ eV fluorescence overtakes Cerenkov. (not shown)

13

Composition Assumption

- T. Gaisser in a 2012 paper proposed a composition model based on ideas of Hillas (2005) and based on available CR data (CREAM experiment and others)
- In the second plot I assign the intermediate nuclei to either proton or iron components based on their atomic mass. ... This is a temporary solution due to lack of simulations with these primaries.

TALE Data 09/06/13-12/06/13

mirid 23 ontime

mirid 24 ontime

all mir average

ring3 mir average

ring4 mir average

- Most of run nights included.
- Good weather selection: "clear overhead".
- Some nights, only 8 or 9 live mirrors. Average given is per 10 mirrors.
- *130 hours* total

ontime summary:			
mirid 15 ontime	158.6642 hours		
mirid 16 ontime	167.8622 hours		
mirid 17 ontime	130.3042 hours		
mirid 18 ontime	125.0672 hours		
mirid 19 ontime	169.2778 hours		
mirid 20 ontime	173.4100 hours		
mirid 21 ontime	159.7686 hours		
mirid 22 ontime	176.2797 hours		
mirid 23 ontime	155.4814 hours		
mirid 24 ontime	171.9464 hours		
all mir average	158.8062 hours (9528.37	minutes)
ring3 mir average	155.4914 hours (9329.49	minutes)
ring4 mir average	162.1209 hours (9727.25	minutes)
ontime summary:			
mirid 15 ontime	130.2761 hours		
mirid 16 ontime	139.2289 hours		
mirid 17 ontime	106.0219 hours		
mirid 18 ontime	102.7808 hours		
mirid 19 ontime	138.9392 hours		
mirid 20 ontime	141.1650 hours		
mirid 21 ontime	130.4131 hours		
mirid 22 ontime	143.1025 hours		

126.3481 hours

138.6161 hours

127.5420 hours

131.8363 hours

129.6892 hours (7781.35 minutes)

(7652.52 minutes)

(7910.18 minutes)

15

Spectrum (1)

 Spectrum using H4a composition compared to spectra with a pure proton/iron composition

Spectrum (2)

TALE along with HiRes
with HiRes
monocular
spectrum
and the
HiRes/MIA
spectrum

Spectrum (3)

TALE spectra calculated using a pure iron/proton composition.

Spectrum (4)

 TALE spectrum compared to measurements from other experiments.

Spectrum (5)

- Lastly, TALE Cerenkov along with TALE
 Fluorescence Spectrum.
- Fluorescence spectrum presented this morning (session J8) by Z. Zundel: "Fluoresence Detection of Cosmic Ray Air Showers Between 10^{16.5} eV and 10¹⁹ eV with the Telescope Array Low Energy Extension (TALE)"

Summary and Outlook

- We developed a new event reconstruction technique which allows us to use TALE as an Imaging Air Cerenkov Telescope.
- TALE as a Cerenkov detector can reach energies lower than 10¹⁶ eV with very high statistics.
- We performed a first calculation of the cosmic rays energy spectrum using TALE data from the first three months of operation.
- We are just starting, a lot is still left to learn and do.

Backup Slides

Telescope Array Experiment

- The Telescope Array (TA) experiment was originally designed for the study of ultra high energy (above ~1x10¹⁸ eV) cosmic rays.
- TA is a follow up experiment to AGASA/HiRes experiments with the goal of improving on both.
- TA Low Energy extension (TALE) aims to lower the energy threshold of the experiment to well below 10^{17} eV.

Energy (eV)

Telescope Array Experiment

- TA is located in Millard County, Utah, ~200 km southwest of Salt Lake City.
- Surface Detector: 507 scintillation counters 1.2 km spacing. (*run 24/7*)
- Three Fluorescence

TALE Surface Detector Infill Array

- Infill Array operates 24/7.
- However, when FD is on, we get the opportunity for hybrid observation.

TA Fluorescence Detectors

Cerenkov Contribution to Detected Signal

- HiRes-II event set.
- Most events have less than 20% contribution from direct *and* scattered Cerenkov light.

Cerenkov Contribution to Detected Signal

- TALE Cerenkov event set.
- Most events have more than 90% contribution from *direct* Cerenkov light.

PRELIMINARY TEST DATA proton MC iron MC ·→↓ 10^{2} 10 10^{-1} 0.5 0.6 0.9 0.7 0.8 direct Ckov npe / total detected npe

Cerenkov events seen by TALE Fluorescence Detector

- Corsika / IACT (arXiv:0808.2253 [astro-ph])
 - Full 3D MC shower development
 - Cerenkov photons production
 - Cerenkov photons detection (sphere surrounding telescope mirror)
- We can test our reconstruction code (and parameterizations) *against an external, "true MC" simulation*.

Simulation specific to TALE telescopes.

MD coordinates origin, magnetic filed.

TA "typical" atmosphere

OBSLEV 1.58	6655e5	
MAGNET 21.9	5 46.40	
ATMOSPHERE 1	1 F	
CERSIZ 5.0		
CWAVLG 300.	420.	
CSCAT 100	2.5e5 0.	
ARRANG 0.0		
TELESCOPE	1848.30	-1635.03
TELESCOPE	2137.39	-1629.84
TELESCOPE	2576.55	-1959.19
TELESCOPE	2849.93	-2053.28
TELESCOPE	3226.95	-2463.69
TELESCOPE	3297.67	-2744.10
TELESCOPE	3588.58	-3209.51
TELESCOPE	3559.09	-3497.11
TELESCOPE	3673.34	-4033.99
TELESCOPE	3547.29	-4294.15

observation level (in cm) (MD - 2Radius) magnetic field (TA .. Middle Drum)

!TAZ external atmos model (TA Typical)

!TAZ bunch size Cherenkov photons
!TAZ Cherenkov wavelength band

!TAZ scatter Cherenkov events

!TAZ	rotation	ofa	array	to	north		
251.03	129	.54	!TAZ	СТ	1 =TALE	mir	15
251.84	129	.54	!TAZ	СТ	2		
252.47	129	.54	!TAZ	СТ	3		
253.05	129	54	!TAZ	СТ	4		
253.37	129	.54	!TAZ	СТ	5		
253.07	129	.54	!TAZ	СТ	6		
253.05	129	54	!TAZ	СТ	7		
252.46	129	54	!TAZ	СТ	8		
251.83	129	.54	!TAZ	СТ	9		
251.02	129	.54	!TAZ	CT1	L0		

- Simulation fully determines:
 - number of photons
 - location of photon hits (before mirror Reflection)
 - arrival times at the detector

/** * Photons collect * and wavelength * produced by COM */	ted in bunches of identical direction, position, time, . The wavelength will normally be unspecified as RSIKA (lambda=0).
<pre>struct bunch { float photons; float x, y; float cx, cy; float ctime; float zem; float lambda;</pre>	<pre>/**< Number of photons in bunch */ /**< Arrival position relative to telescope (cm) */ /**< Direction cosines of photon direction */ /**< Arrival time (ns) */ /**< Height of emission point above sea level (cm) */ /**< Wavelength in nanometers or 0 */</pre>

Corsika-IACT simulation results

- Look at bias and resolution of reconstruction of MC generated with both options.
- Simulation energies: 2, 3, 5, and 10 PeV

Shown distributions are for events with reconstructed energy *greater than* 4 PeV

With "mine" option

5671

567

35.72

With "theirs" option

200 180

4.55

log_(E[EeV]

Comparison (Bias)

	Mine (proton / iron) Reconstruction Bias	Theirs (proton / iron) Reconstruction Bias	Diff (proton / iron)
Nmax	-4. / -1. %	-11. / -6. %	7./5.%
Energy	-0. / -18. %	-7./-21.%	7./3.%
Xmax	-9.5 / 7.6 (g/cm^2)	-2.2 / 30. (g/cm^2)	-7.3 / -22.4 (g/cm^2)

Comparison (Resolution)

	Mine (proton / iron) Reconstruction: Gaussian fit sigma	Theirs (proton / iron) Reconstruction: Gaussian fit sigma	Diff (proton / iron)
Nmax	11. / 10. %	12. / 12. %	1. / 2. %
Energy	13. / 8. %	13. / 10. %	0. / 2. %
Xmax	39. / 34. (g/cm^2)	46. / 42. (g/cm^2)	7. / 8. (g/cm^2)

Corsika-IACT conclusion

- There are still some small differences between simulations done within the detector MC framework and what Corsika predicts:
- Proton energy/Nmax differ by ~7%
- Proton xmax off by ~7 gm
- Iron energy/Nmax differ by ~5%/3%
- Iron xmax by ~22gm

• Widths of all distributions are slightly larger with Corsika simulations.

Known Issues

- No nightly detector or atmospheric calibration. We are working on implementing such a procedure.
- Only proton and iron showers have been considered so far in the MC and analysis. We need to include at least one more intermediate primary.
 - Shower missing energy correction, aperture calculation, etc.
- Reconstruction and quality cuts are still work in progress.