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Middle Drum TALE Observatory Site (14+10 
Telescopes)
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Middle Drum TA/TALE Viewing Range

 TAMD + TALE

 14 lower telescopes make 
up TA (Middle Drum) 
Detector.

 10 higher telescope (new 
addition) make up the TA-
Low Energy extension 
Detector.

 TALE telescopes equipped 
with (HiRes2) FADC 
electronics.
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Example Fluorescence event 
seen by TALE FD

 Five telescope (eight 
with ring 1-2 mirrors) 
event.

 Event duration ~ few 
micro-seconds

 Long angular extent

 Likely to trigger 
ground array 

 Threshold ~3e16 eV
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Example Cerenkov event 
seen by TALE FD 

 Most C'kov events 
are single telescope

 Event duration 
~100ns - ~600 ns

 Short angular extent

 Unlikely to trigger 
surface detector

 Threshold ~3e15 eV
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TALE Event Reconstruction

 Event reconstruction entails reconstructing:
 Shower geometry:

 Required for profile/energy reconstruction
 Arrival direction of primary particle (anisotropy)

 Shower profile/energy:
 Primary particle energy (spectrum)
 Profile xmax indicates particle type (composition) 
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TALE Event Reconstruction

 Event reconstruction method:
 TALE Cerenkov events are reconstructed as 

monocular events:
 Surface array data not available for vast 

majority of events (energy too low, and/or 
core location outside of array)

 Profile constrained Geometry Fit (PCGF) method 
(developed and used for HiRes-I analysis) is 
adapted for TALE.

 Event angular extent (track-length) too 
short.  
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TALE Corsika-IACT MC

 Corsika / IACT  (arXiv:0808.2253 [astro-ph])
 Full 3D MC shower development
 Cerenkov photons production
 Cerenkov photons detection (sphere surrounding 

telescope mirror)
 We can test our reconstruction code (and 

parameterizations) against an external, “true MC” 
simulation.
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Events with reconstructed  
E > 4 PeV
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TALE Trigger Aperture

 Protons 
penetrate deeper 
and are more 
likely to trigger.

 At higher 
energies, 
composition 
dependence 
becomes less 
pronounced. 
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TALE Cerenkov Reconstructible 
Aperture

 Cut on Cerenkov 
fraction limits growth 
of aperture at high 
energies.

 Iron/Proton 
reconstruction 
efficiency slightly 
different.

 Note: Above 1017 eV 
fluorescence 
overtakes Cerenkov. 
(not shown)
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Composition Assumption

 T. Gaisser in a 2012 paper 
proposed a composition 
model based on ideas of 
Hillas (2005) and based on 
available CR data (CREAM 
experiment and others)

 In the second plot I assign 
the intermediate nuclei to 
either proton or iron 
components based on their 
atomic mass. … This is a 
temporary solution due to 
lack of simulations with 
these primaries. 
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TALE Data 09/06/13-12/06/13

 Most of run nights 
included.

 Good weather 
selection: “clear 
overhead”.

 Some nights, only 
8 or 9 live 
mirrors. Average 
given is per 10 
mirrors.

 130 hours total 
good weather 
data.
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Spectrum (1)

 Spectrum 
using H4a 
composition 
compared to 
spectra with a 
pure 
proton/iron 
composition
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Spectrum (2)

 TALE along 
with HiRes 
monocular 
spectrum 
and the 
HiRes/MIA 
spectrum
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Spectrum (3)

 TALE 
spectra 
calculated 
using a pure 
iron/proton 
composition.
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Spectrum (4)

 TALE spectrum 
compared to 
measurements 
from other 
experiments.
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Spectrum (5)

 Lastly, TALE Cerenkov 
along with TALE 
Fluorescence Spectrum.

 Fluorescence spectrum 
presented this morning 
(session J8) by Z. Zundel:
“Fluoresence  Detection of 
Cosmic Ray Air Showers 
Between 1016.5 eV and 1019 
eV with the Telescope 
Array Low Energy 
Extension (TALE)”
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Summary and Outlook

 We developed a new event reconstruction technique 
which allows us to use TALE as an Imaging Air 
Cerenkov Telescope.

 TALE as a Cerenkov detector can reach energies 
lower than 1016 eV with very high statistics.

 We performed a first calculation of the cosmic rays 
energy spectrum using TALE data from the first 
three months of operation.

 We are just starting, a lot is still left to learn and do.
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Telescope Array Experiment

 The Telescope Array (TA) 
experiment was originally 
designed for the study of ultra 
high energy (above ~1x1018 
eV) cosmic rays. 

 TA is a follow up experiment to 
AGASA/HiRes experiments 
with the goal of improving on 
both.

 TA Low Energy extension 
(TALE) aims to lower the 
energy threshold of the 
experiment to well below      
1017 eV.
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Telescope Array Experiment

 TA is located in 
Millard County, 
Utah, ~200 km 
southwest of Salt 
Lake City.

 Surface Detector: 
507 scintillation 
counters 1.2 km 
spacing. (run 24/7)

 Three 
Fluorescence 
Detectors 
overlooking SD 
(run only during 
moonless nights):
 Middle Drum 

(MD)
 Black Rock (BR)
 Long Ridge (LR)
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TALE Surface Detector Infill 
Array

 Infill Array 
operates 24/7.

 However, 
when FD is 
on, we get the 
opportunity 
for hybrid 
observation.
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Long Ridge Black Rock Mesa

Middle DrumRefurbished
from HiRes

~30km New FDs

6.8 m2 
~1 m2

14 cameras/station
256 PMTs/camera

5.2 m2 

TA Fluorescence Detectors

Observation 
started Dec. 
2007

Observation 
started Nov. 
2007

Observation 
started Jun. 
2007

256 PMTs/camera
HAMAMATSU R9508

FOV~15x18deg
12 cameras/station
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Cerenkov Contribution to 
Detected Signal

 HiRes-II event 
set.

 Most events have 
less than 20% 
contribution 
from direct and 
scattered 
Cerenkov light.
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Cerenkov Contribution to 
Detected Signal

 TALE Cerenkov 
event set.

 Most events have 
more than 90% 
contribution from 
direct Cerenkov 
light.
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TALE Corsika-IACT MC

 Corsika / IACT  (arXiv:0808.2253 [astro-ph])
 Full 3D MC shower development
 Cerenkov photons production
 Cerenkov photons detection (sphere surrounding 

telescope mirror)
 We can test our reconstruction code (and 

parameterizations) against an external, “true MC” 
simulation.
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TALE Corsika-IACT MC

  Simulation 
specific to 
TALE 
telescopes.

  MD 
coordinates 
origin, 
magnetic 
filed. 

  TA “typical” 
atmosphere

  Wavelength 
range

  Each Corsika 
shower is 
resampled 
100 times at 
different core 
locations 
surrounding 
origin

 Mirror 
positions in 
rotated 
coordinate 
system 
(Corsika 
coordinates)
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TALE Corsika-IACT MC

  Simulation 
fully 
determines:
  number of 

photons
  location of 

photon hits 
(before mirror 
Reflection)

 arrival times at 
the detector
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Corsika-IACT simulation 
results

 Look at bias and resolution of reconstruction of 
MC generated with both options.

 Simulation energies: 2, 3, 5, and 10 PeV
 Shown distributions are for events with 

reconstructed energy greater than 4 PeV 
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With “mine” option
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With “theirs” option
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Comparison (Bias)

Mine (proton / iron) 
Reconstruction Bias

Theirs (proton / iron) 
 Reconstruction Bias

Diff (proton / iron)

Nmax -4. / -1. % -11. / -6. % 7. / 5. %

Energy -0. / -18. % -7. / -21. % 7. / 3. %

Xmax -9.5 / 7.6 (g/cm^2) -2.2 / 30. (g/cm^2) -7.3 / -22.4 (g/cm^2)
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Comparison (Resolution)

Mine (proton / iron) 
Reconstruction: 
Gaussian fit sigma

Theirs (proton / iron) 
 Reconstruction: 
Gaussian fit sigma

Diff (proton / iron)

Nmax 11. / 10. % 12. / 12. % 1. / 2. %

Energy 13. / 8. % 13. / 10. % 0. / 2. %

Xmax 39. / 34. (g/cm^2) 46. / 42. (g/cm^2) 7. / 8. (g/cm^2)
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Corsika-IACT conclusion

 There are still some small differences between 
simulations done within the detector MC 
framework and what Corsika predicts:

 Proton energy/Nmax differ by ~7%
 Proton xmax off by ~7 gm
 Iron energy/Nmax differ by ~5%/3%
 Iron xmax by ~22gm
 Widths of all distributions are slightly larger with 

Corsika simulations.
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Known Issues

 No nightly detector or atmospheric calibration.  We 
are working on implementing such a procedure.

 Only proton and iron showers have been 
considered so far in the MC and analysis.  We need 
to include at least one more intermediate primary.

 Shower missing energy correction, aperture 
calculation, etc. 

 Reconstruction and quality cuts are still work in 
progress.
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