Anisoptropy in Cosmic Ray Arrival Directions Observed by the Telescope Array

Telescope Array Collaboration

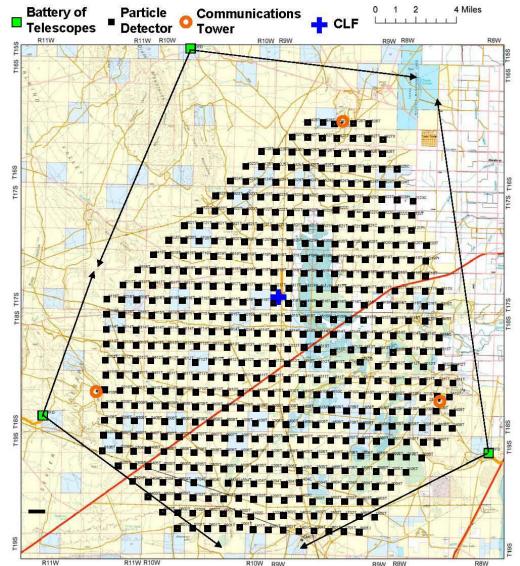
R. U. Abbasi^a, M. Abe^m, T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a, S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i}, T. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^l, D. Ikeda^h, N. Inoue^m, T. Ishii¹, R. Ishimori^b, H. Itoⁿ, D. Ivanov^{a,o}, C. C. H. Jui^a, K. Kadota^p, F. Kakimoto^b, O. Kalashev^q, K. Kasahara^r, H. Kawai^s, S. Kawakami^j, S. Kawana^m, K. Kawata^h, E. Kido^h, H. B. Kim^d, J. H. Kim^a, J. H. Kim^y, S. Kitamura^b, Y. Kitamura^b, V. Kuzmin^q, Y. J. Kwon^g, J. Lan^a, S. I. Lim^c, J.P. Lundquist^a, K. Machida^I, K. Martensⁱ, T. Matsuda^t, T. Matsuyama^j, J. N. Matthews^a, M. Minamino^j, K. Mukai^l, I. Myers^a, K. Nagasawa^m, S. Nagatakiⁿ, T. Nakamura^u, T. Nonaka^h, A. Nozato^f, S. Ogio^j, J. Ogura^b, M. Ohnishi^h, H. Ohoka^h, K. Oki^h, T. Okuda^v, M. Onoⁿ, A. Oshima^j, S. Ozawa^r, I. H. Park^w, M. S. Pshirkov^x, D. C. Rodriguez^a, G. Rubtsov^q, D. Ryu^y, H. Sagawa^h, N. Sakurai^j, A. L. Sampson^a, L. M. Scott^o, P. D. Shah^a, F. Shibata^I, T. Shibata^h, H. Shimodaira^h, B. K. Shin^d, J. D. Smith^a, P. Sokolsky^a, R. W. Springer^a, B. T. Stokes^a, S. R. Stratton^{a,o}, T. A. Stroman^a, T. Suzawa^m, M. Takamura^e, A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^a, M. Tanaka^t, S. B. Thomas^a, G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b, Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, T. Wong^a, R. Yamane^j, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c, K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinger^a, Z. Zundel^a

^oUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo,

ⁱKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ^jOsaka City University, ^kKanagawa University, ^IUniv. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^oRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, ^uKochi University, ^vRitsumeikan University, ^wSungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yUlsan National Institute of Science and Technology, ^zEarthquake Research Institute, University of Tokyo, ^{an}Hiroshima City, University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University

Telescope Array Collaboration

R. U. Abbasi^a, M. Abe^m, T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a, S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i}, T. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^I, D. Ikeda^h, N. Inoue^m,

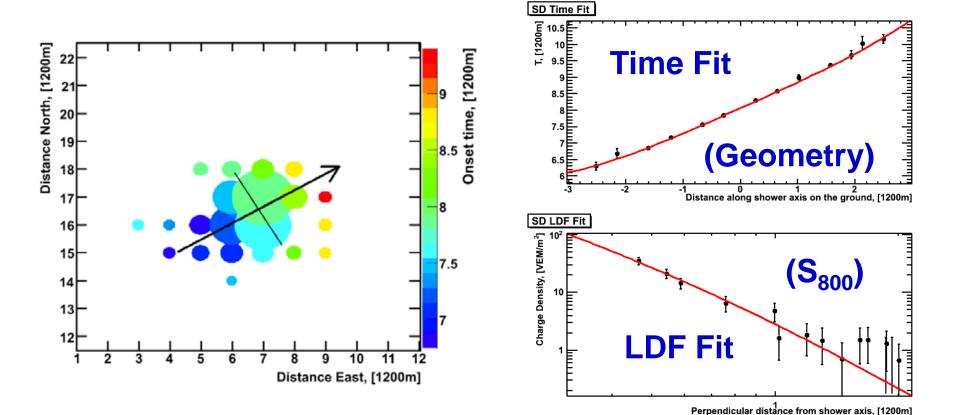

T. Suzawa^m, M. Takamura^e, A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^{aa}, M. Tanaka^t, S. B. Thomas^a, G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b, Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, T. Wong^a, R. Yamane^j, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c, K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinger^a, Z. Zundel^a

^aUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo,

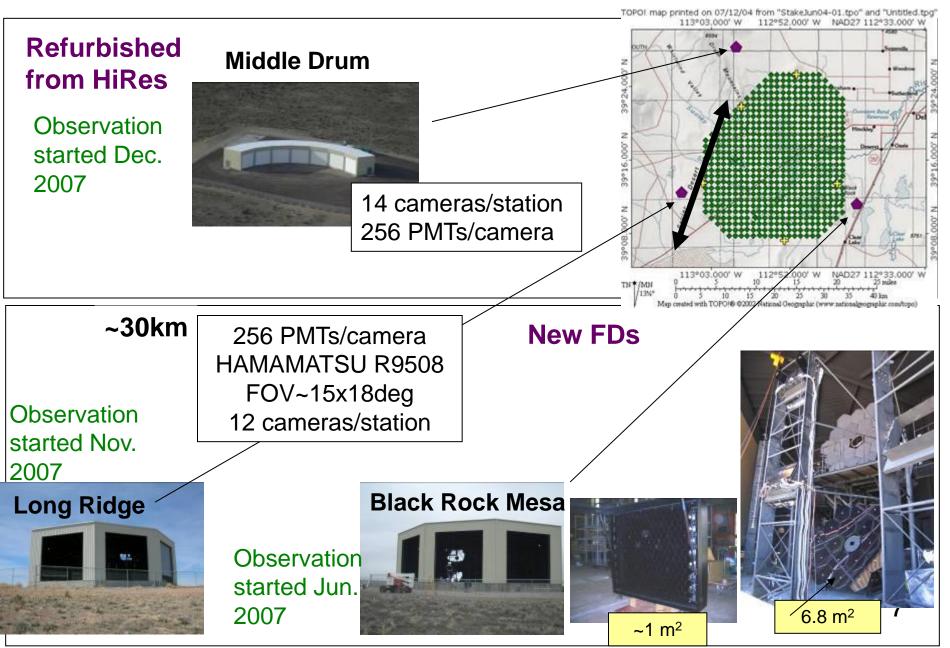
ⁱKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ^jOsaka City University, ^kKanagawa University, ^IUniv. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^oRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, ^uKochi University, ^vRitsumeikan University, ^wSungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yUlsan National Institute of Science and Technology, ^zEarthquake Research Institute, University of Tokyo, ^{aa}Hiroshima City University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University

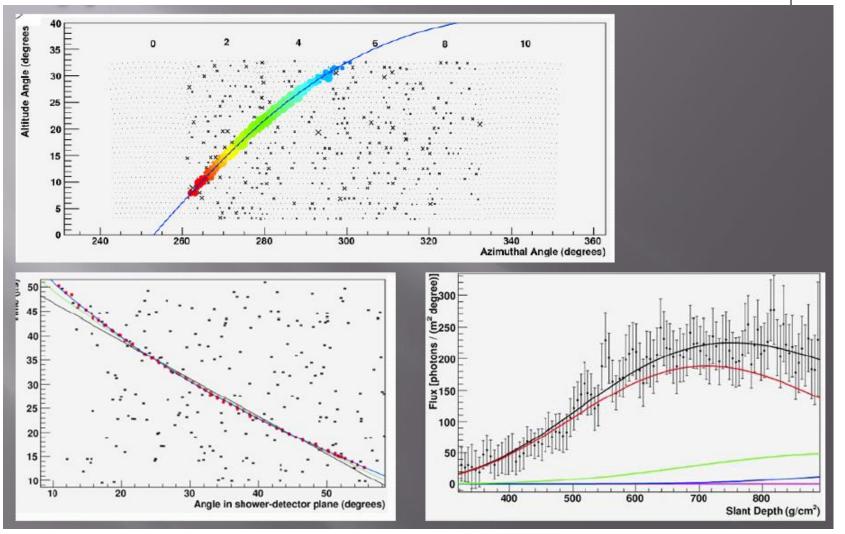
Telescope Array Configuration

- Located 200 km SW of Salt Lake City
 - 507 surface units on 1.2 km rectangular grid
 - Total area: 680 km²
- SD augmented by 3 air fluorescence stations
- SD commissioned in May 2008


TA Surface Detector

- Powered by solar cells; radio readout.
- Self-calibration using single muons.
- In operation since May, 2008.

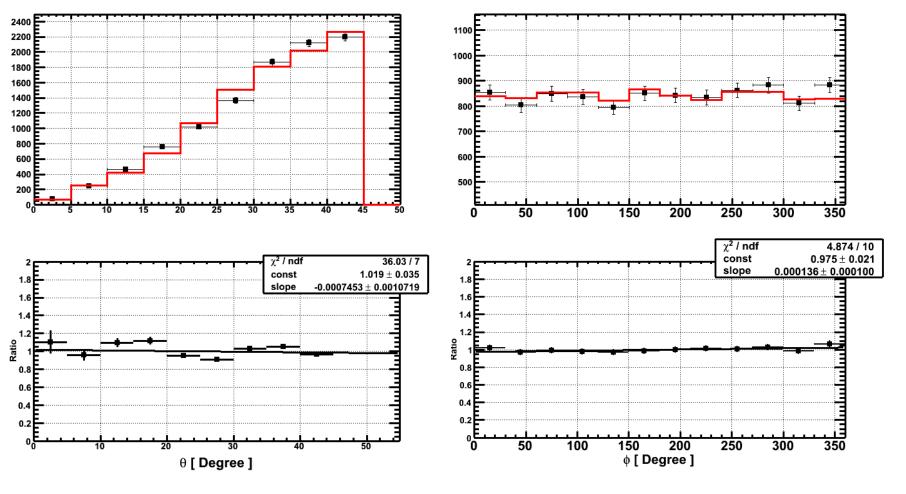

Typical Event: Surface Detector



Each counter self-calibrates every 10 min

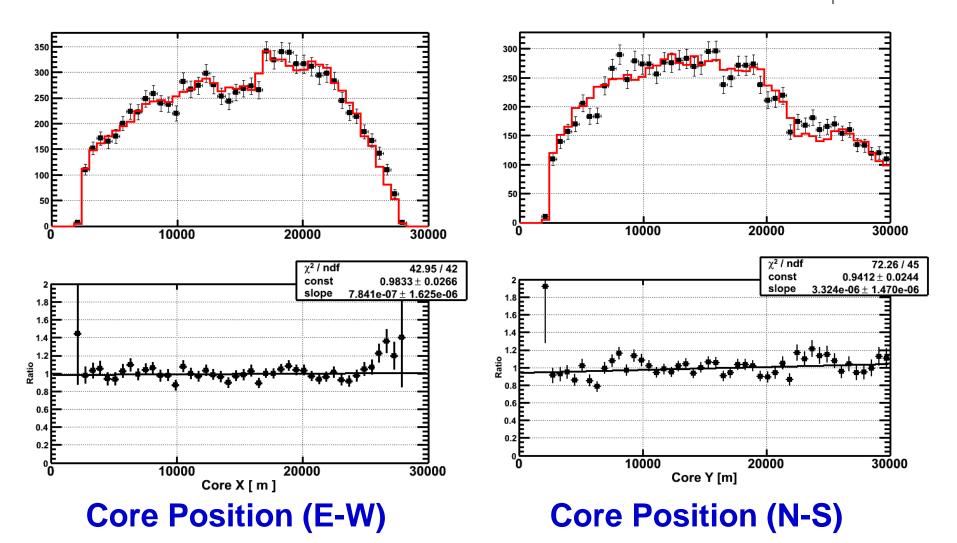
TA Fluorescence Detectors

Typical Event: Fluorescence Detector

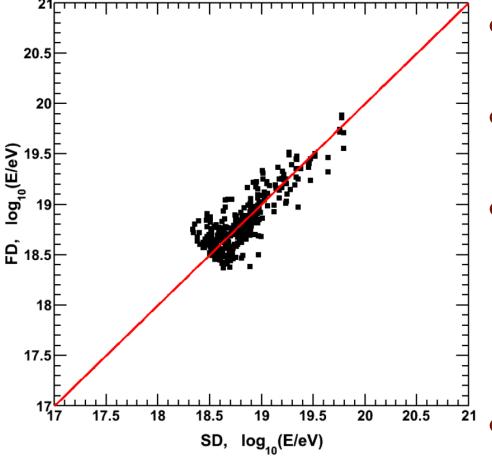

A Careful Analysis Method

No CIC approach, but rather full Monte Carlo

- Simulate the data the same way it is observed by writing out the MC events in same format as data.
- Fits tuned to data using functional form observed by previous experiment (i.e. AGASA) to ensure model independence.
- Analyze the MC with the same programs used for data.
- Confirm with data/MC comparison plots.


SD Analysis: Geometric Data/MC Comparisons

Azimuth angle


Zenith angle

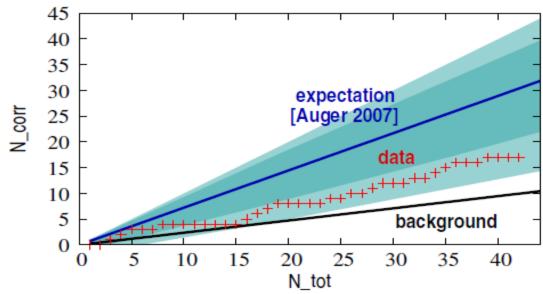
SD Analysis: Geometric Data/MC Comparisons

SD Analysis: Energy Scale

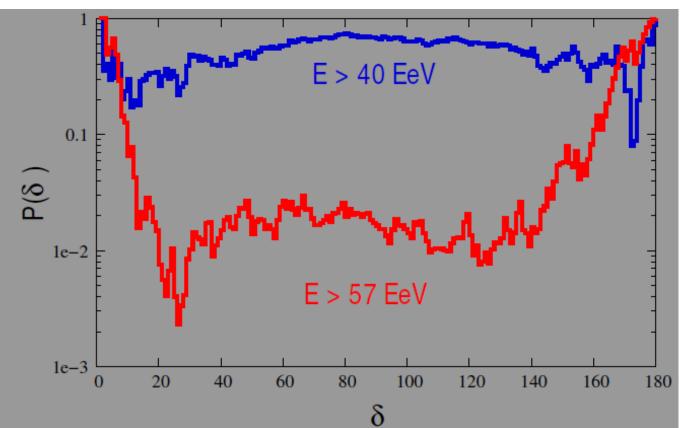
- SD and FD energy estimation disagree
- FD estimate possesses less model-dependence
- Set SD energy scale to FD energy scale using well-reconstructed events from all 3 FD detectors
- 27% renormalization w/QGSJET-II-03 protons

Anisotropy Studies

- Correlation with AGNs (as per Auger)
- Autocorrelation (as per AGASA)
- Correlation with Large Scale Structure
- "Hotspot" Search


Anisotropy Data Set

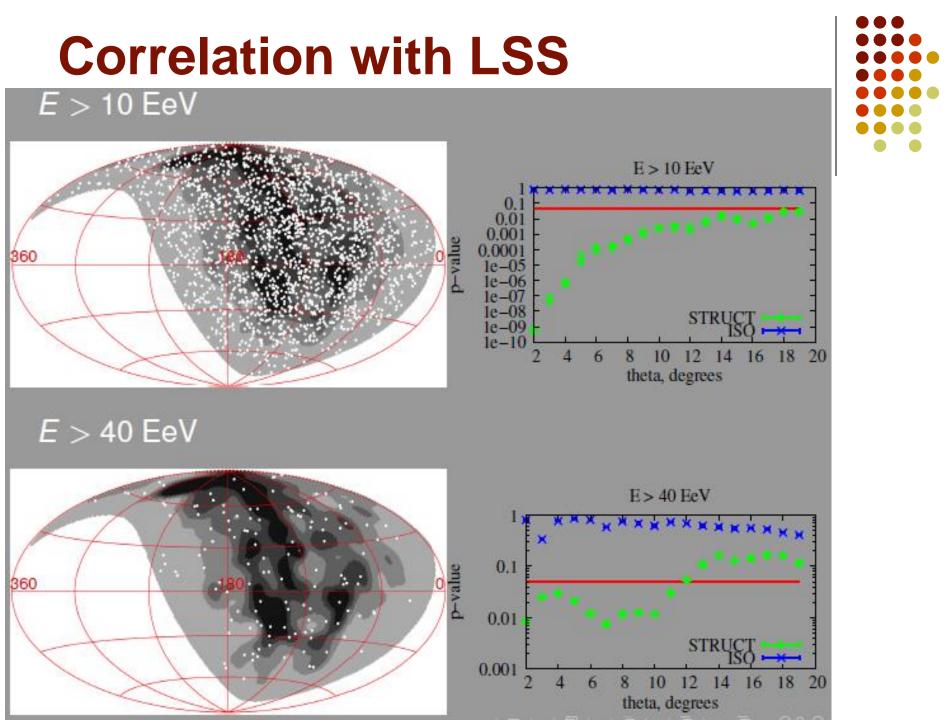
- 8 May 2008—13 May 2013 (5 years)
- <55° zenith angle
- 2130 events above 10 EeV
- 132 events above 40 EeV
- 52 events above 57 EeV


Cosmic Ray Origins Search for AGN Correlations

- Parameters from the Auger 2007 publication:
 - Veron-Cetty & Veron catalog 2006
 - Redshift 0 < z < 0:018 465 AGN</p>
 - Angular separation < 3.1°
- 17/42 events p=0.017

Autocorrelation

- No evidence of small scale clustering (as per AGASA)
- Departure from isotropy of 3σ at ~20°



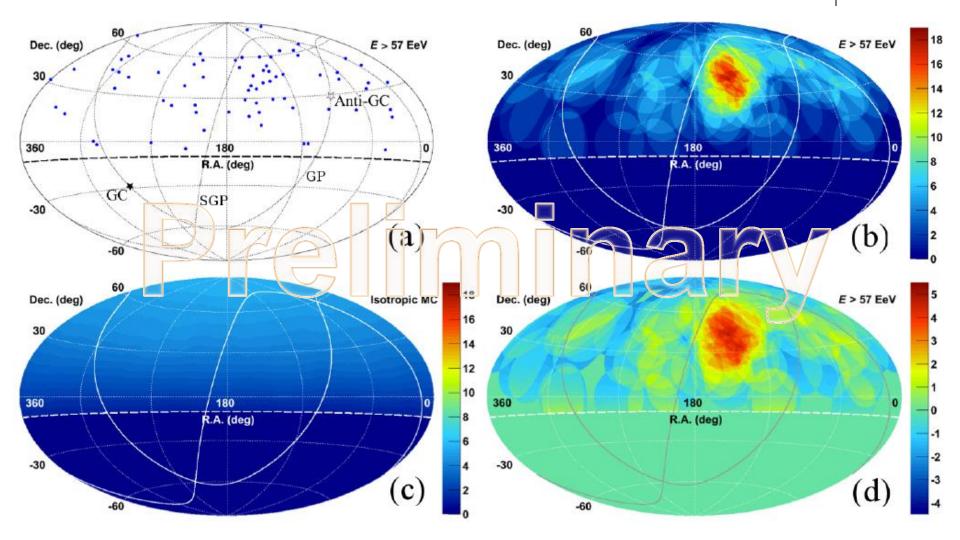

Correlation with LSS

Motivation:

- TA composition consistent with protons
- Protons @10²⁰ eV only expected to have 2-5^o deflection at GZK distances
- Hence arrival directions at the highest energies should correlate with LSS
- Only free parameter: deflection angle

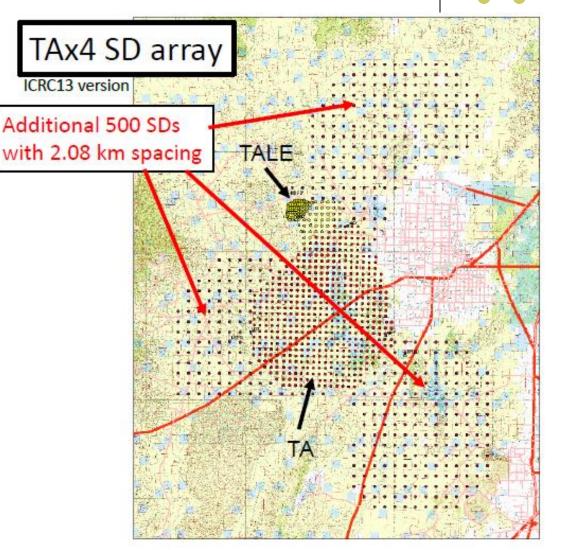
 High energy E > 57 EeV data are not compatible with isotropy at ~ 3σ (pre-trial)

Correlation with LSS


Needed: More Statistics

- Telescope Arrary event set optimized for energy spectrum studies
- Looser cuts are acceptable for anisotropy studies
- 52 events >57 EeV \rightarrow 72 events >57 EeV

The TA Hotspot


Hotspot Description

- 20° oversampling
 - No scanning
- Maximum: 19 events/4.5 expected 5.1σ
- Chance of a 5.1σ maximum anywhere in a isotropic set: 3.6σ

If we're going to study this hotspot, we need a lot more data...

- TAx4
 - 500 additional SD's with 2.08 km spacing
 - One additional FD composed of recycled HiRes-II components

- TA possesses the largest aperture for UHECRs in the Northern Hemisphere.
- Several different analyses point to anisotropy above at energies above 57 EeV
- More data needed

Acknowledgments

文部科学省

MEXT

MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN

