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Abstract: The reconstruction of air shower parameters such as energy and position of shower maximum, Xmax,
implies that one knows on average how a shower with those parameters appears in the detector based on the
detector response. This implies that one has a robust simulation of the detector response, but it also implies
that there exists an accurate mapping between the fundamental shower parameters and the input to the detector
simulation. Knowing the mapping between parameters and detector simulation one can perform an “Inverse Monte
Carlo” simulation to fit the parameters to the observed data and thus reconstruct the energy and Xmax of the initial
air shower. In this poster, a technique is presented that maps the air shower parameters to the flux of Cherenkov
photons at a given point on the ground and the time development of that flux. This is accomplished both by using
full CORSIKA simulations and by employing a shower-universality model to generate Cherenkov light from an
idealized shower. The results will show how well the efficient universality modeling compares to the computer-
intensive CORSIKA simulations as well as the underlying potential of the non-imaging Cherenkov air shower
measurement technique.
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The reconstruction of extensive air shower parameters
from the data collected by arrays of non-imaging Cherenkov
detectors traditionally relies on comparing data (total signal
or signal width) from each counter to phenomenologically
determined distributions. BLANCA[1] uses a fit to the
Cherenkov Lateral Distribution (CLD) to determine the
energy and depth of showers. Tunka[2] uses both the CLD
and a fit to the lateral distribution of measurements of the
Full Width Half-Max (FWHM) of the Cherenkov light
pulse at each counter, denoted as the Cherenkov Width
Lateral Distribution (CWLD), to determine the same shower
parameters. While these techniques are sufficient in most
cases to reconstruct shower parameters, a more robust
reconstruction can be performed if one can predict the
flux and time distribution of photons in each counter for
a given set of shower parameters, specifically shower size
and depth. The prediction should be free of any randomly
generated variables so that one can fit the shower parameters
by χ2 minimization. This technique, called Inverse Monte
Carlo (IMC) because the detector simulation routines will
usually be identical to the ones used in the Monte Carlo
simulation of the detector aperture and acceptance, is used
by the HiRes[3] and Telescope Array[4] experiments when
analyzing fluorescence data. The use of the IMC method
when reconstructing non-imaging Cherenkov array data
should allow the determination of the CLD and CWLD for
the entire array.

While air shower variations limit the ability to predict
the CLD and CWLD for the air shower resulting from a
given primary cosmic ray, much of this variation can be
attributed to variations of Xmax. The idea that showers with
the same shower size and depth are identical is called Show-
er Universality. It has been developed in the context of ultra-
high energy cosmic ray detectors using fluorescence detec-
tion techniques[5, 6, 7]. Shower Universality claims that
knowing Nmax and Xmax is sufficient to predict the electron
energy distribution, the electron angular distribution, the

electron lateral distribution and the electron time delay dis-
tribution at every point in the shower. It does this using
parameterizations of the distributions which depend only
on the position within the shower with respect to Xmax and
the parameters of the atmosphere at that point in the show-
er. This paper shows how Shower Universality, which in-
volves the electromagnetic component of the shower, may
be extended to include the Cherenkov radiation component
and thus be useful for non-imaging Cherenkov array data
reconstruction.

1 Mathematical Treatment
The angular distribution of Cherenkov photons, gγ produced
at a given point in the shower is the convolution of the
electron angular distribution, ge, with the Cherenkov cone
produced by each electron. We will, however, derive gγ

through direct integration of the fraction electrons going
into an element of solid angle dΩe which then give rise to
a Cherenkov photon going into another element of solid
angle dΩγ . We fix dΩγ to correspond to an actual counter
in the array.

The geometric variables used in the calculation are
defined in Figure 1. n̂ is the direction of the shower (core), ê
is the direction taken by the electron, and γ̂ is the direction
taken by the photon. For a given counter γ̂ is fixed with
respect to n̂. θe is the angle between n̂ and ê, θγ is the angle
between ê and γ̂ and θ is the fixed angle between n̂ and
γ̂ . Spherical trigonometry applies, and the interior angles
of the spherical triangle are labeled φ with the subscript
from the opposite leg. The Law Of Cosines, cosθe =
cosθ cosθγ − sinθ sinθγ cosφe allows one to calculate θe
from the other two legs and their opening angle. We will
thus consider θe to be a function of θγ and φe with θ being
fixed.

The electron energy distribution at a given point in
a shower is typically designated fe(Ee;s) = dNe

dl where
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Fig. 1: The angles involved in producing a Cherenkov
photon at an angle θ from the shower axis. The interior (φ )
angles are labeled after the opposite side (θ ).

l = lnEe. (We will consistently use l to denote the logarith-
m of energy, l = lnE.) fe has been parameterized by several
groups[6, 7]. The electron angular distribution, ge, is de-
termined for electrons of a given energy, ge(θe;Ee) =

dNe
dΩe

.
Cylindrical symmetry is assumed. Combining fe and ge,
we find that the fraction of electrons at a given depth in the
shower with a given energy and a going in the direction ê is

dNe = fe(Ee;s)ge(θe;Ee)dldΩe

The electrons going in toward ê will produce Cherenkov
photons according to their energy and path length. If we
divide out the maximum photon yield dNγ/dX(Ee� ETh),
where ETh is the Cherenkov threshold, we’re left with a
relative photon yield of YČ = 1− (Ee/ETh)

2. Some of these
photons will go into the solid angle about γ̂ as long as
θγ = θČ. Thus the fraction of photons going towards γ̂ from
electrons going towards ê is

dNγ = YČ δ (θγ −θČ)
dΩγ

2π

The key to easily performing the integral is to realize
that dΩe can be defined in terms of variables related to
γ̂ rather than with respect to n̂ as described above. Thus,
dΩe = sinθγ dφe dθγ . Likewise dΩγ = sinθ dφn̂,γ̂ dθ , where
φn̂,γ̂ is the arbitrary azimuthal angle between n̂ and γ̂ . Thus
the fraction of all Cherenkov photons produced at a point
in the shower going into γ̂ is gγ(θ ;s,δ )dΩγ ,

gγ =
∫

dΩe

∞∫
lTh

dl YČ fe ge δ (θγ −θČ)

=

1/n∫
0

dθγ sinθγ YČ(lγ) fe(lγ)
2π∫
0

dφe
ge(θe; lγ)∣∣∣θ ′Č(lγ)∣∣∣

where the θ dependence is implicit in lTh, lγ = l(θγ) (i.e.
the energy at which the Cherenkov angle is θγ ), and

θ
′
Č(lγ) =

dθČ
dl

∣∣∣∣
lγ
.

Switching from dθγ to lγ as an integration variable makes
for more robust numerical integration, and is especially sim-
ple because

∣∣∣θ ′Č(lγ)∣∣∣ is just the Jacobian for this transforma-
tion. In this case θγ = θγ(l). Thus we have

gγ =

∞∫
lTh

dlγ sinθγYČ(lγ) fe(lγ)
2π∫
0

ge(θe; lγ)dφe (1)
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Fig. 2: Three examples of gγ at a specific atmospheric height
(where δ = 0.000235). The angular distribution for showers
of age s = 0.55, 1.05 and 1.55 are shown.

In practice the upper limit of the outer integral is determined
by the range of the parameterization of ge.

The integrands above were implemented as C++ func-
tions in ROOT, and the ROOT built-in integrations routines
were used to perform the numeric integration. With a lax
setting on the precision of the two integrations (10−5 on
the inner integral, 10−4 on the outer) the time for the total
integration at a few hundred θ values for a given s and δ

was reduced to a few seconds. An example output of the
calculation is shown in Figure 2. Note that the function has
been explicitly normalized after the calculation. Also, θ val-
ues have been selected at logarithmic points along the axis.
This result also uses the parameterization of the electron
angular distribution ge developed in the next section.

The gγ values may be tabulated into a lookup table for
later use. One must take care to select the points carefully
to retain the most salient feature, the sharp peak visible in
Figure 2 at low values of s. Logarithmic sampling in θ is
necessary, with enough points in θ to capture the shape of
the peak. The points in δ must be close enough that the
peak does not move by more than one bin in θ between
successive samples in δ . Sampling in s is less demanding as
the peak does not move as s changes. With these safeguards,
the value of gγ may be safely interpolated from the stored
values in the lookup table.

2 Electron Angular Distribution
The election angular distribution has been parameterized by
a number of different groups[5, 7]. However, these studies
have been done for use in UHECR fluorescence experiments
where electron energies are only considered up to the GeV
scale and electron angles only down to the degree scale. For
use in Cherenkov detectors, a parameterization of ge should
extend in energy up to the TeV scale and down in angle to
well below the Cherenkov cone angle at any point of the
shower.

We have chosen to extend the parameterization of Giller
et al[5], with an exponential distribution for the bulk of the
shower and a power law distribution for the tail. However,
rather than joining the two functional forms at some angle,
we have taken the sum of two distributions. Our parameteri-
zation is thus

ge(θ) = a1e−c1θ−c2θ 2
+a2(1+θ/θ0)

−r

where a1, c1, c2, a2, θ0 and r are implicitly functions of E.
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Fig. 3: A parameterized fit to the electron angular distribu-
tion at 100.55 GeV is shown in black. The two components
of the fit are shown in red (exponential) and green (power
law). The electron distribution from 10 Corsika events are
shown as variously colored data points.

The parameters were chosen by averaging the electron
distributions from 30 Corsika-generated showers, evenly
split between proton and iron primaries and between ener-
gies of 3.16, 10 and 31.6 PeV energies. The result of the pa-
rameterization is shown in Figure 3 for electrons of energy
3.55 GeV. Also shown in the figure are the 10 events with a
primary energy of 3.16 PeV. The large variation between
individual events in the simulated values for ge indicate that
universality holds better for the exponential portion of the
distribution than for the power law part.

We assumed pure power laws for the scale parameters
c1 and c2 and nearly pure for θ0 and let the normalization
parameters adjust in the fit. We find

a1(E) = a10Ea11+a12l+a13l2

c1(E) = c10Ec11

c2(E) = c20Ec21

a2(E) =

{
a20Ea21 +a22 E ≥ Eb

a20E
a21
b +a22−a24

E
a23
b

(Ea23 +a24) E < Eb

θ0(E) =

{
p0E p1 E ≥ Ec

p0E p1−p2
c E p2 E < Ec

r(E) =

{
r0 E ≥ Ed

r1Er2+r3l E < Ed

where Eb = 10−1.5 GeV, Ec = 10−1.4 GeV, Ed = 10r2/r3

GeV and l = logE. The lower level parameters are
i 0 1 2 3 4

a1i 359000 1.82 0.0366 0.0138
c1i 163 0.952
c2i 183 0.921
a2i 340 1.74 6.04 4.29 2.51
pi 0.0204 -0.790 -2.20
ri 3.70 0.132 -0.134 0.538

Comparison of this parameterization with the average Cor-
sika showers in shown in Figure 4.
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Fig. 4: Comparison of the parameterization presented in this
paper with the average of 10 Corsika showers at a primary
cosmic ray energy of 3.16 PeV. Comparisons shown at
electron energies of 100.44, 100.95, 101.45, 101.95, 102.45 and
102.95 GeV.

3 Results and Comparisons
To check the quality of the model of Cherenkov light
production given by Equation 1, we have simulated the
arrival time distributions for Cherenkov light at counters
various distances from the shower core. The shower was
broken into longitudinal sections which correspond to
the time binning specified for the given counter. This
avoids sampling issues and gives very smooth signal time
distributions. The steps were sometimes further subdivided
if shower parameters changed significantly within a step.
In each step we multiply the calculated gγ by the step size
dX and the solid angle subtended by the counter from that
step dΩ. We also multiply by the maximum Cherenkov
yield (the relative part being taken into account in the
integration) and the shower size as given by a Gaisser-
Hillas parameterization. When comparing the universality
model results against Corsika predictions, we used the
Corsika Gaisser-Hillas fit parameters as inputs to the model
predictions.

Comparisons with a specific Corsika generated shower
are shown in Figure 5. The shower was a proton initiated
shower with a primary energy of 1015.5 eV. The Gaisser-
Hillas parameters of the shower are Nmax = 1.8× 106,
Xmax = 575 g/cm2, x0 =−35 g/cm2 and Λ = 84 g/cm2. No
atmospheric photon absorption was applied in either the
universality model or in the Corsika calculation.

It is clear that the shower-as-line assumption used in the
universality model doesn’t work for as well for counters
close to the shower core, where the spread of the shower
is of the same order as the counter distance. It appears
that longitudinal distribution of shower electrons makes the
time distribution sharper for counters within about 120 m.
However, even for these counters, the universality model
predicts the shape of the tail fairly well. At distances well
beyond 120 m, the model predicts the shape quite well.

Figure 6 shows a comparison of the CWLD over the
full range of counters. The variability in the widths comes
from the statistical variation within the Corsika simulation.
Figure 7 shows the CWLD for vertical showers with Xmax
from 400–900 g/cm2.
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Fig. 5: Arrival time distributions for counters at 30, 60, 120,
160 320, and 600 m from the shower core. The universality
model is shown in blue, while the Corsika calculation is
shown in black. The 120-m universality simulation shows
the narrow and broad contributions to the FWHM at parity.
The narrow contribution dominates at smaller distances
while the broad contribution dominates at larger.
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Fig. 6: Comparison of the Cherenkov Width Lateral Distri-
bution between Corsika simulation (sold line, circle) and the
universality model (dashed line, square). The shower being
compared had Gaisser-Hillas parameters Nmax = 1.8×106,
Xmax = 575 g/cm2, x0 =−35 g/cm2 and Λ = 84 g/cm2. The
full-width half max of the Cherenkov photon arrival time
distribution at the ground is shown for each model versus
the distance along the ground from the shower core. The
Corsika simulation arrival time distributions are rebinned
to allow reliable measurements of the FWHM.
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Fig. 7: The CWLD for vertical showers with Xmax from 400–
900 g/cm2. The discontinuities at around 120 m come from
the change in the dominant FWHM component.

4 Discussion
The use of shower universality to model the response of
non-imaging Cherenkov counters shows promise, but must
be developed further to gain usefulness. The simplest use of
the model, with a linear shower and only electron energies
and angles taken into account, is in qualitative agreement
with detailed shower simulations. It reproduces both the
CLD and CWLD at distances from the core greater than
about 30 m, though the transition from core-dominated
(narrow) to bulk-dominated (wide) widths at about 120 m is
much sharper in the universality model than in the shower
simulations.

Two obvious improvements to the universality model
present themselves. The first is to include the time-delay
of the electrons within the shower. The time delay of the
electrons has been parameterized as a function of energy
by Lafebre et al[7]. The second improvement is to model
the lateral distribution of the electrons using the NKG
distribution[10, 11]. Implementation of the NKG sampling
is difficult to do with sufficient sampling to retain the
smooth curves currently in place or without increasing the
simulation time drastically.
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